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ABSTRACT
Previous work has demonstrated the effectiveness of rating system-
based matchmaking for level ordering within the particular con-
straints of human computation games. However, players were not
informed about the rating system, nor allowed to choose the dif-
ficulty of upcoming levels. Informing players of the ratings used
in the system and offering them choice of upcoming level diffi-
culty may enhance feelings of competence and control respectively,
thereby further improving player engagement. Thus, we attempted
to improve player experience by both exposing players to the un-
derlying rating system, as well as offering them choice of level dif-
ficulty. We found that players cognizant of ratings both attempted
and completed more levels than those who were not. Though ad-
ditionally offering choice did not significantly affect behavior, we
found that player choice was influenced by the outcome of the pre-
ceding level. Moreover, we did not observe any significant impact
on self-reported measures of subjective experience.
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1 INTRODUCTION
Human computation games (HCGs) attempt to solve computation-
ally intractable problems by modeling them as games that aim to
leverage the skills of large numbers of human players. HCGs have
found success in tasks such as protein folding [8], image labeling
[38] and software verification [6, 11] among others.

Such success notwithstanding, HCGs present unique challenges
to achieve difficulty balancing, due to the constraints imposed by
having to solve pre-existing problems that cannot be freelymodified
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and whose difficulties are often unknown in advance. Thus, game
levels which are based on these unsolved, real-world problems
cannot be manipulated or reasoned about a priori as a means to
implement difficulty balancing. To this end, rating systems such
as Elo [14], Glicko/Glicko-2 [17, 18] and Microsoft’s TrueSkill [19]
were suggested [7] as a possible means to overcome these difficulty
balancing barriers within HCGs. Later work [32] demonstrated this
approach to be effective: by giving both players and levels Glicko-2
ratings, performing matchmaking between players and levels was
used to manipulate the ordering of levels served to players rather
than manipulating the levels themselves.

However, while past work was able to demonstrate the effective-
ness of using rating systems in balancing difficulty and improving
engagement within HCGs, it did so while keeping players out of
the loop—players were not aware of their in-game performance and
skill level while playing through only those levels that the system
served them. Though the matchmaking algorithm was shown to
be effective in serving players levels with challenge appropriate
to their skill, additionally offering players information about the
ratings system as well as giving them the ability to select their
desired degree of difficulty may further improve engagement by
tapping into additional motivational factors.

This work builds upon previous work [32] by examining the
effects of exposing the players to the underlying Glicko-2 rating
system used to perform level ordering and matchmaking in the
HCG Paradox and also studying the effects of offering players the
choice in difficulty of each level. Although we found no observ-
able impact on self-reported measures of subjective experience, we
found that players who were aware of their ratings and the rating
system spent significantly more time playing and also attempted
and completed significantly more levels than those who were not.
Moreover, both informed and uninformed players completed levels
of similar difficulties. While additionally offering choice of difficulty
seemed to not significantly impact player experience or engage-
ment, we noticed the choice made by players to be influenced by
their outcome on the preceding level.

This work contributes an empirical study demonstrating that
1) informing players about the underlying system used for match-
making can improve engagement in human computation games
and 2) player’s selection of the difficulty of an upcoming level is
influenced by the outcome of the previous level.

2 BACKGROUND
This work draws on a wide range of background literature that
relates to informing players of their ratings and giving them choice
in difficulty as means to improve engagement.
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2.1 Engagement and Flow
Engagement is a concept in the psychology of motivation and
play that attempts to capture how involved a person feels in a
task that they are performing. This is related to Csikszentmihalyi’s
theory of flow [10] which talks about achieving the “flow state”—an
optimal state of mind where an individual is deeply engrossed in
an activity and is motivated to do it well. Understandably, most
games aim to engage players and push them towards this flow state
in order to deliver optimal player experiences. Traditional methods
of optimizing engagement have involved difficulty balancing, i.e.
having in-game challenges be tailored to the specific player’s skill
level [1, 5, 12, 15, 16, 24, 26], though recent work has suggested
that other factors, such as novelty, might play a bigger role in
enhancing player engagement [27]. While previous work [32] has
shown that player engagement within HCGs can be increased by
implementing such difficulty balancing with the help of player-
versus-level matchmaking using the Glicko-2 rating system [18],
further improvements in engagement may be achieved by offering
players additional motivational factors such as competence and
choice.

2.2 Self-Determination Theory
Informing players about their ratings and giving them choice may
additionally help satisfy specific player needs as identified by self-
determination theory (SDT) [30, 31]. SDT is a theory of motivation
that argues that the quality of motivation experienced by an in-
dividual is governed by three innate psychological needs, namely,
autonomy, competence and relatedness.

Ryan and Deci state that while intrinsic motivation (“the doing
of an activity for its inherent satisfactions rather than for some
separable consequence” [30]) satisfies autonomy and competence,
extrinsic motivation (“’[the doing of an activity] in order to attain
some separable outcome” [30]), due to not being inherently inter-
esting, must satisfy a sense of belonging and connection to people,
groups or cultures, for the purpose of achieving a certain goal. This
sense is referred to as relatedness. Thus, SDT claims that conditions
that satisfy the needs for autonomy, competence and relatedness,
lead to individuals experiencing enhanced feelings of engagement,
motivation and performance.

HCGs, due to their inherent nature of harnessing the collective
ability of large groups of individuals to solve important problems,
may already satisfy player needs for relatedness. By informing play-
ers of their skill level and offering them choice of level difficulty,
we may also satisfy the needs for competence and autonomy respec-
tively, and thereby achieve both measurably increased engagement
as well as improved player experience.

Thus, we wanted to determine if our experimental design helped
increase engagement by leveraging SDT. Several questionnaires
exist to assess the different constructs that are present within the
theory. For our experiment, we decided to use the Intrinsic Moti-
vation Inventory (IMI) [31] which is designed for examining the
subjective experience of participants who work on an interest-
ing task within the bounds of different experimental conditions,
which describes our study quite well. The IMI can be used to
gauge the participants’ intrinsic motivation via the subscales of

interest/enjoyment, perceived competence, perceived choice, ef-
fort/importance, value/usefulness and felt pressure and tension,
while they undertake a given task. For our experiment, we used the
first four of these subscales, which we describe in more detail in
section 3.4.

2.3 Dynamic Difficulty Adjustment
Dynamic difficulty adjustment (DDA) refers to a general category of
techniques for dynamically altering the in-game degree of difficulty
in response to player performance. Several such techniques have
been employed in past work, ranging from tweaking in-game pa-
rameters [20] andmodifying level design (such as in Left 4 Dead [9]),
to procedurally generating level segments using machine learned
models of difficulty [21] and ordering levels generated by users
using the TrueSkill rating system on player attempt outcomes, as
in the platformer JumpCraft [36].

Baldwin et al. [2, 3] studied the effects of informing players
about the existence of DDA techniques within the game, specifically
focusing on multiplayer DDA. They found that giving players this
additional information reduced the effectiveness of the DDA system
since skilled players were better able to exploit knowledge about the
system to gain an advantage over those with less skill. Since HCGs
are often non-competitive, it is likely that informing players about
the workings of any underlying difficulty adjustment mechanism
would not necessarily reduce its effectiveness as in the multiplayer
setting that Baldwin et al. examined. Hence, DDA techniques might
still benefit from player feedback which may help in guiding the
underlying difficulty adjustment algorithms at work, particularly
in a non-competitive HCG setting like ours.

2.4 Feedback
Exposing the players to their ratings and the underlying rating sys-
tem can be considered a form of feedback. It has long been known
that appropriate feedback can support enjoyment and learning,
often examined in educational contexts [4, 33, 37]. Recent work has
also shown that giving feedback to workers in a crowdsourcing
context can be beneficial [13].

Siu et al. [34] studied the effects of reward feedback within the
specific context of HCGs. Their findings showed that offering play-
ers choice of reward between multiple reward systems had positive
effects on both task completion and player experience. Giving play-
ers such choice of reward seems to simultaneously tap into the
needs for both competence and autonomy, leading to higher player
engagement. This suggests that such benefits may also be observed
by satisfying these needs with the help of choice of difficulty (rather
than choice of reward) and skill-based feedback (rather than re-
ward feedback) by exposing players to the rating system, as in our
experiment.

Mekler et al. [29] studied the effects of feedback in the form of
points, levels and leaderboards within an image annotation task.
Similar to [34], the study showed that feedback helped increase
the rate of task completion (via increased image tag quantity) but
failed to positively impact tag quality, intrinsic motivation or need
satisfaction. These findings indicate that feedback of this form acts
as extrinsic (rather than intrinsic) motivation and is suitable for
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Rating: 961 (easy) Rating: 1476 (medium) Rating: 1739 (hard)

Figure 1: Example levels from our data set covering a range of ratings.

producing increased task completion, since though intrinsic moti-
vation was not augmented, it was not negatively impacted either.
While our ratings-based skill feedback is similar to the feedback
studied by Mekler et al., additionally offering choice within our
HCG tasks could positively impact intrinsic motivation while still
preserving the task completion benefits that skill feedback was
shown to offer.

All of this feedback-based literature informed the formulation
of our first hypothesis which claimed that giving ratings-based
feedback to players would improve their engagement over not
giving them such feedback.

2.5 Difficulty Choice
Several classic and modern games offer players the ability to choose
their preferred level of in-game difficulty. The traditional and most
prevalent form of doing so is to present users with the static dif-
ficulty options of “Easy”, “Normal” and “Hard” at the start of the
game, but game difficulty choices can take many other forms and
modalities such as biofeedback, for example [25].

Smeddinck et al. [35] explored how offering different modes of
difficulty choices affect player experience. Their findings suggest
that players exhibit a preference for manually choosing in-game
difficulty which informed our decision to offer players the ability
to manually choose whether the next level in the game should be
of a low, high or recommended difficulty. Moreover, Smeddincke
et al. found that embedding difficulty choices within games do not
significantly impact game experience apart from perceived auton-
omy. Thus, we examined if this increased autonomy afforded by
manual choice, combined with competence provided by revealing
the rating system and relatedness offered by HCGs, helped improve
engagement. This led to our second hypothesis, where we claimed
that offering such difficulty choice in addition to revealing the rat-
ings to players, would further increase player engagement over
only revealing the ratings and not giving choice.

3 METHOD AND SYSTEM
3.1 Hypotheses
Based on the literature, we formulated the following hypotheses:
• H1: Informing players of their rating (as well as explaining the
rating system and encouraging them to get a high rating) will
lead to higher behavioral engagement and higher self-reported

measures of experience than not informing the players about
their ratings or the underlying rating system.

• H2: Additionally giving players choice when informing them
of their ratings will lead to even higher measures of both be-
havioral engagement and self-reported experience than those
observed when informing them of the rating system but not
offering them choice.

3.2 Game Description
For our study, we used Paradox [11], a 2D puzzle HCG originally
designed for crowdsourced formal verification where each level
within the game corresponds to a maximum satisfiability (MAX-
SAT) problem. The levels are graph-like structures with the vertices
corresponding to variables and clauses in the underlying MAX-
SAT problem. Players can utilize both manual as well as automated
tools (represented as “brushes”) to color these vertices, in turn
assigning values to the variables in the underlying problem, in
order to satisfy as many clauses as possible. The player’s score for
each level corresponds to the percentage of clauses that the player
is able to satisfy. A player ‘completes’ or finishes a level by reaching
a pre-determined target score. Each level thus corresponds to one
specific human computation task whose difficulty is estimated as
the level’s Glicko-2 rating. Paradox has found application in past
studies [32, 39] of engagement within HCGs and thus proved to be a
suitable testbed for this work. Example levels of different difficulties
and their corresponding ratings are shown in Figure 1.

The version of the game in our experiment consisted of 9 hand-
authored tutorial levels served in a fixed order that had to be com-
pleted, followed by 55 optional challenge levels whose order was
customized by a ratings-based matchmaking system. Of the 55 chal-
lenge levels, 17 were generated by us using randomized algorithms
for SAT problem generation, while the remaining 38 were drawn
from the set of SATLIB Benchmark Problems1. When served a level,
a player had the option to skip the level (ignored for the purposes
of rating); once they made a move, the player could either complete
the level by reaching a target score, or forfeit the level (interpreted
as a win or loss, respectively, for ratings). Ratings for the levels
were generated using match data from past HITs involving Paradox
[32, 39]. For this experiment, the level ratings obtained ranged from
807 to 2276 on the Glicko-2 scale.

1http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
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BLIND RATINGS CHOICE (after a level)

Figure 2: Screenshots for each condition.

3.3 Participant Recruitment
For recruiting players, we framed our experiment as a Human Intel-
ligence Task (HIT) posted on the crowdsourcing platform Amazon
Mechanical Turk (MTurk). Though MTurk participants are paid
workers, studies have shown that these workers are motivated
by enjoyment in addition to payment [22, 28]. Past studies have
also successfully used paid recruitment through MTurk to examine
voluntary engagement in games [23, 32].

The details of our HIT were as follows:
Title: Human Computation Puzzle Game
Description: Play a puzzle game derived from a real-world
problem. You would need Adobe Flash Player 10.0 or greater
to proceed.
Keywords: survey, game, play, puzzle

The HIT paid $1.75 and indicated that the expected time to finish
the task was 30 minutes. Note that this was the estimated time to
play through the entire game (i.e. the 9 tutorial levels along with
the 55 challenge levels), which was optional. Workers only needed
to complete the tutorial levels and skip through 5 challenge levels,
and then complete the survey. These actions took approximately 7,
1, and 1 minute respectively. Adding a minute to read instructions,
the players’ required actions took roughly 10 minutes, making the
average pay rate about $10.50 per hour. In our experiment, the
workers spent a median time of 6.9 minutes on the tutorial levels,
and a median time of 11.1 minutes on the challenge levels.

Players were given the following instructions:
There are three stages to the HIT:
1. Play and complete all the tutorial levels.
2. Try to complete as many challenge levels as you can!
3. Go to the survey and complete it.

You MUST complete all the tutorial levels. The survey will
not be accessible during the tutorial and will become avail-
able once you fail to complete (i.e. skip/forfeit) at least FIVE
challenge levels
It is NOT necessary to complete all challenge levels and you
will be given the completion code as long as you complete the
survey.
For our experiment, players were required to complete all nine

tutorial levels in order to become familiar with the game. These
levels were used only to help the player understand the mechanics
of the game and data from these levels were not taken into account
for our analyses.

Upon completing the tutorial phase, players proceeded to the
challenge phase, which consisted of a total of 55 different levels
served dynamically, as described above. After skipping or forfeiting
a total of 5 levels, the player was additionally offered the option to
finish playing at any time and go directly to the post-game survey.
Once a level was seen by a player, that level was removed from the
level pool, thereby allowing each player to see each level only once.
Although no player played through all 55 levels in the game, if this
were to have happened, the player would have been informed that
there were no more levels left and taken directly to the post-game
survey.

After finishing the game, the players completed the Intrinsic Moti-
vation Inventory questionnaire. The version we presented consisted
of 25 questions that measured the subscales of Interest/Enjoyment,
Perceived Competence, Perceived Choice and Effort/Importance. The
HIT was completed upon submitting this survey.

3.4 Ratings Feedback and Choice Experiment
For each participant, we measured behavioral engagement by track-
ing the following variables:
• Challenge Time: The total time in seconds spent by the player
in the challenge levels.

• Levels Attempted: The number of levels attempted by a player,
where they made at least one move.

• Levels Completed: The number of levels completed by a player,
where they reached the target score.

• Player Rating: The player’s rating upon completing the HIT.
• Highest Level Rating: The highest rating of any completed level
(set to 0 if a player didn’t complete any levels).

In addition to the above metrics for engagement, we also conducted
a post-game IntrinsicMotivation Inventory (IMI) survey2 in order to
test our hypotheses through the lens of self-determination theory,
as described in the background section. We used the following
subscales of the IMI in order to examine the players’ self-reported
measures of subjective experience.
• Interest/Enjoyment (scale of 7 to 49)
• Perceived Competence (scale of 6 to 42)
• Perceived Choice (scale of 7 to 49)
• Effort/Importance (scale of 5 to 35)

2http://selfdeterminationtheory.org/intrinsic-motivation-inventory/.

http://selfdeterminationtheory.org/intrinsic-motivation-inventory/
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All questions for each subscale were used. Each question was
scored from 1 to 7 and subscales had from 5 to 7 questions, result-
ing in the above ranges for each subscale. The Interest/Enjoyment
subscale in particular is considered to be the self-reported mea-
sure of intrinsic motivation. Moreover, the subscales of Perceived
Competence and Perceived Choice are utilized as additional positive
predictors of behavioral and self-reported intrinsic motivation. The
Perceived Choice subscale was particularly relevant in this work on
account of our choice-based experimental condition. Finally, the
Effort/Importance subscale gives a self-reported measure of how
much effort the player put into the game.

Our experiment consisted of three different conditions. These
were: serving levels without informing players of either their own
or the level’s ratings (BLIND), serving levels while informing the
player about their own rating, the level’s ratings as well as briefly
explaining how the rating system works (RATINGS), and serving
levels as in the second condition but additionally offering the play-
ers the choice of the next level being of easy, recommended or hard
difficulty based on their current ratings (CHOICE).

For the first two conditions, the order of levels served was deter-
mined by using a matchmaking algorithm which takes as input the
player’s current Glicko-2 rating and is thus based on the player’s
in-game performance. Similar to previous work [32, 39] that used
matchmaking in Paradox, the player’s desired win probability was
computed based on their current Glicko-2 rating. The desired win
probability is the win probability versus levels that we wanted
players to have based on current skill estimates and is discussed fur-
ther in [32]. Additionally, we also computed the player’s expected
win probability against each level using Glicko-2’s E function. The
level that was then served was the one against which the player’s
expected win probability was closest to the player’s desired win
probability. In this way, the matchmaking algorithm differed from
the one used in [32] where the level served was randomly selected
from a group of levels whose expected win probabilities were within
a certain window of the player’s desired win probability. Addition-
ally, when determining the level to be served, we removed from
consideration the easiest (i.e. lowest rated) and hardest (i.e. highest
rated) remaining levels because we wanted to ensure that there
would always be at least one level easier than and one level harder
than the recommended level for the CHOICE condition.

In the CHOICE condition, we applied the matchmaking algorithm
as in the first two conditions to determine the level for the recom-
mended option, but used as input the player’s current rating r − 400
to determine the level for the easy option, and the player’s current
rating r + 400 to determine the level for the hard option. In other
words, if a player only ever selected recommended levels in the
CHOICE condition, then she would receive the same order of lev-
els as if she were in the RATINGS or BLIND condition. The +/−400
value was based on the formula for expected win probability, and
roughly corresponds to an order of magnitude difference in the win
probability of the player or level.

In all conditions, after each match, the player’s rating was up-
dated using the Glicko-2 system and thewhole process was repeated
for each match the player was involved in until the player exited
the game by going to the survey.

Additionally, prior to the challenge levels section, in the BLIND con-
dition, players were given the following instructions:

Variable BLIND RATINGS CHOICE

Challenge Time† 515a 791b 897b

Levels Attempted† 7a 10b 12b

Levels Completed† 5a 7b 8b

Player Rating 1500 1500 1525
Highest Level Rating 1222 1293 1413
Interest/Enjoyment 63% 65% 63%
Perceived Competence 57% 52% 57%
Perceived Choice 78% 80% 82%
Effort/Importance 83% 86% 83%

Table 1: Summary table of variable analysis. Median values
are provided for all variables, but represented as percentages
of maximum possible obtainable value for survey variables.
Variables with daggers† had significant differences in om-
nibus tests. Values with differing superscriptsa,b had signif-
icant differences in post-hoc tests. More detail on statistical
tests is given in Table 2.

Use the skills you’ve learned to play the upcoming chal-
lenge levels. You now have the option to skip levels, or
go to the survey if you wish.

Alternately, in the RATINGS and CHOICE conditions, where the
players were informed of their ratings, they were given the follow-
ing instructions:

Use the skills you’ve learned to play the upcoming chal-
lenge levels. You now have the option to skip levels, or
go to the survey if you wish. Gameplay is regulated by
a rating system. Each challenge level is assigned a rat-
ing indicating its difficulty. The higher the rating, the
harder is the level. You are assigned a default starting
rating of 1500. When you complete a level, your rating
goes up, and when you forfeit a level, your rating goes
down. Your rating is unaffected when you skip a level.
Try to get as high a rating as you can!

Thus, both informed and uninformed players were encouraged
to complete as many levels as they could (in the instructions before
beginning the game), with the former being told additionally to
attempt to achieve as high a rating as they could.

4 RESULTS
The challenge section of the HIT was completed by 288 players, 10
of whom failed to complete the survey. Thus, we ran our analyses
on 278 players. Of these 278 players, 111 were randomly assigned
into BLIND, 71 into CHOICE and 96 into RATINGS.

A summary of variable values is given in Table 1. Since the
data was not normally distributed, we performed non-parametric
tests for our analyses. First, we performed an omnibus Kruskal-
Wallis test to look for significant differences across all three condi-
tions. If found, we proceeded to perform three post-hoc Wilcoxon
Rank-Sum tests with a Bonferroni correction to look for pairwise
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Variable Result

Challenge Time p = 0.003, H (2) = 11.60
BLIND / RATINGS p = 0.026,W = 4197.5
BLIND / CHOICE p = 0.010,W = 2927
CHOICE / RATINGS n .s .,W = 3565

Levels Attempted p < 0.001, H (2) = 15.49
BLIND / RATINGS p = 0.005,W = 3976
BLIND / CHOICE p = 0.002,W = 2737
CHOICE / RATINGS n .s .,W = 3588

Levels Completed p = 0.002, H (2) = 12.86
BLIND / RATINGS p = 0.02,W = 4128.5
BLIND / CHOICE p = 0.004,W = 2824.5
CHOICE / RATINGS n .s .,W = 3608.5

Player Rating n .s ., H (2) = 0.16
Highest Level Rating n .s ., H (2) = 3.67
Interest/Enjoyment n .s ., H (2) = 0.21
Perceived Competence n .s ., H (2) = 4.58
Perceived Choice n .s ., H (2) = 1.33
Effort/Importance n .s ., H (2) = 0.84

Table 2: Summary table of statistical results from analy-
sis. The first row for each variable is the omnibus Kruskal-
Wallis test. Additional rows for a variable, if any, are the
post-hoc Wilcoxon Rank-Sum tests with a Bonferroni cor-
rection for pairwise comparisons of the three experimental
conditions.

significant differences between the conditions. A summary of all
comparisons is provided in Table 2.

For Challenge Time, Levels Attempted and Levels Completed, we
found significant differences across all three conditions. We found
no pairwise difference between CHOICE and RATINGS but in both
CHOICE and RATINGS, players spent significantly more time in the
challenge levels and both attempted and completed significantly
more number of levels than in BLIND.

We did not find significant differences across conditions for any
of our other variables, be it Player Rating and Highest Level Rat-
ing (i.e. measures of engagement in terms of player and level ratings)
or Interest/Enjoyment, Perceived Competence, Perceived Choice and
Effort/Importance (i.e. self-reported measures of experience).

While offering players choice did not result in any observable
impact in engagement or experience, we noticed an interesting pat-
tern to the choices made by the player depending on the outcome
of the previous level, as given in Table 3 (χ2(4) = 37.3, p < .001).
Namely, following a win, players were more likely to select the
recommended level over the easy one, while following a skip, play-
ers were more likely to select the easy level. As expected, the hard
option was the least preferred choice in all conditions but it is inter-
esting to note that while, both after a win and after a skip, the hard
level was chosen about 11% of the time, after a loss, this percentage
more than doubled to 23%.

Previous Re-
sult

Total Easy Rec. Hard

Complete 592 40% 49% 11%
Forfeit 218 41% 36% 23%
Skip 170 57% 32% 11%

Table 3: Percentage of times each option was selected given
previous match outcome (χ2(4) = 37.3, p < .001).

5 DISCUSSION
Based on our results, we conclude that H1 is partially supported.
For all variables measuring the ‘amount’ of behavioral engagement,
namely Challenge Time, Levels Attempted and Levels Completed, we
observed significantly higher measures when informing players
about their ratings and the underlying rating system than when
not doing so. However such improvements were observed neither
for the engagement metrics tied to the level and player ratings
(i.e. Player Rating and Highest Level Rating), nor the self-reported
measures of experience.

Additionally, H2 has to be rejected. The CHOICE condition did
not produce any observable improvement in either engagement or
player experience, as compared to the RATINGS condition.

These findings suggest that giving players feedback about their
in-game performance and skill level, along with information about
the degree of challenge posed by the levels in the game, and encour-
aging them to get a high rating, engages them to spend significantly
more time playing the game and to utilize this time to attempt and
complete a greater number of levels. Further, we can also conclude
that players who were told about the working of the rating system
did not exploit this additional information to attempt fewer levels
and skip more levels so as to not risk lowering their rating. Rather,
given that we observed no significant differences across conditions
for Player Rating, we can say that exposing the players to the rating
system made them play and finish more levels without worrying
about their own rating and thereby playing defensively. It is worth
mentioning that though both informed and uninformed players
were told to complete as many challenge levels as they could in
the game’s initial instructions page, the informed players may have
been further reinforced to do so by being encouraged to get as high
a rating as they could when told about the ratings system, prior to
the actual challenge levels.

Moving on to choice, our findings imply that allowing players
the ability to choose the degree of difficulty of the levels impacted
neither the engagement metrics nor the self-reported experience
measures in any significant manner. The latter point is particularly
interesting. Neither ratings feedback nor choice caused players
to report increased values for any of the Intrinsic Motivation In-
ventory measures. For each measure, the median values obtained
per condition as a percentage of the maximum possible value ob-
tainable is given in Table 1. The maximum obtainable values for
Interest/Enjoyment, Perceived Competence, Perceived Choice and Ef-
fort/Importancewere 49, 42, 49 and 35 respectively. It is worth noting
from this table that the measures for Perceived Choice are not signif-
icantly increased in the CHOICE condition as compared to the other
two. This may be explained by the fact that while choices available
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to players in the CHOICE condition more explicitly alter the levels
faced by the player, players in the other two conditions still have
the choice of skipping any level they want to. Based on the results,
this may have been perceived as enough of a meaningful choice for
most players. These findings are similar to those of Smeddinck et
al. [35] who also observed that offering choice had no significant
impact on the Interest/Enjoyment and Effort/Importance dimensions
of the Intrinsic Motivation Inventory. Moreover, our findings re-
lated to choice are in line with Smeddinck et al.’s overall conclusion
that variations in perceived autonomy do not greatly impact player
enjoyment and motivation even though players prefer the presence
of manual choices.

While choice failed to measurably improve player experience, it
is interesting to note that the choice made by the player was often
influenced by the outcome of the previous match, as shown in Table
3. Successfully completing a level seems to have not necessarily
given players an increased sense of competence (also confirmed by
our survey results). Rather, it made them less likely to choose the
harder level and a completion was most likely to be followed by the
player choosing the recommended level. This seems to suggest that
after completing a level, and thus attaining a new, higher rating, the
player usually gained enough confidence to not resort to selecting
the easy level, but not enough confidence to select the hard level.
Conversely, skipping a level was most likely followed by the player
choosing the easy level. A possible explanation for this is a player
might be more prone to skipping a level if that level is perceived to
be too difficult to even attempt, and thus the player wanted the level
immediately after that to be easier. Finally, and most interesting of
all, the likelihood that the player selected the hard level doubled
after a forfeit as compared to after a completion or a skip. A likely
explanation for this is that after watching their rating go down due
to a forfeit, players were more eager to get their rating back up
again by completing a level with a higher rating than their own.

6 CONCLUSION
In this work, we explored the effects of giving feedback to players
about their skill level by exposing them to the underlying rating
system used to match them to levels of comparable difficulties. We
also examined the effects of letting players choose the difficulty of
levels served to them. We found that informing players about their
own ratings, as well as the ratings of the levels they played, led to
the players both attempting and completing an increased number
of levels, as well as spending more time playing. Additionally, we
found that offering players the ability to choose the difficulty of the
levels did not have a significant impact on player engagement or
experience, but that the choice of difficulty made by the player was
often influenced by whether they won, lost or skipped the previous
level.

Future work could examine if the findings presented in this
paper also hold in other human computation games, particularly
those in other problem domains. In addition to HCGs, similarly
constrained games in other genres could also benefit from this
work, namely, games which have procedurally generated or user
generated content which is hard to reason about or manipulate in
advance.

Furthermore, having established the demonstrably significant
effects of ratings feedback, it is worth studying the effects of choice
more thoroughly. We have already argued how the implicit choices
present in the non-choice conditions of this game may have been
as meaningful as the explicit choices presented in the choice condi-
tion, thus causing the latter to fail to bring about any significant
improvement in players’ sense of perceived choice. Designing and
presenting players with more meaningful choices that allow for
greater control over the flow of the game is something worth look-
ing into in the future.

In a similar vein, most of the arguments presented to explain the
pattern of player choice in the previous section are conjectures at
best since we did not expect player choices to be influenced by pre-
vious match outcomes in this manner. More rigorously examining
the impact of outcome history on player choice is fertile ground for
future research, particularly having a condition that offers players
choice over level difficulty without giving them any information
about their own skill or exposing them to the underlying rating
system.
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