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Abstract
Prior research has used player rating systems to balance
difficulty in human computation games (HCGs) without hav-
ing to modify their levels by assigning ratings to levels to
indicate level difficulty. Skill chains have also been used to
define difficulty progressions for such games. Both these
methods typically involve associating a level with a single
rating or set of skills as being representative of the difficulty
of both the in-game mechanics of the level and the com-
plexity of the task that it models, taken together as a single
unit. Though effective, this may not be suitable for HCGs
where the game and the task being modeled require dif-
ferent sets of skills and abilities. To this end, we introduce
a disjoint skill model that separately tracks game and task
skill and difficulty in a 2D platformer HCG. We find that the
disjoint model enables players to solve more difficult tasks
compared to a baseline model.
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Introduction
Human computation games (HCGs) leverage the abilities of
players to help solve real-world problems by modeling them
as in-game levels, and have found application in tasks such
as image labeling [30], protein design [14] and software ver-
ification [5]. To overcome the barriers to difficulty balancing
posed by such games on account of levels not being easily
modifiable since they model problems, player rating sys-
tems like Glicko-2 [8] have been used to perform dynamic
difficulty adjustment (DDA) via player-versus-level (PvL)
matchmaking [24]. This involves assigning ratings to play-
ers and levels indicating their skill and difficulty, respectively,
and using these ratings to find levels of appropriate difficulty
for players. Moreover, prior work has also used skill chains
within HCGs [9, 10] to analyze and craft level progressions
that require players to acquire progressively more complex
skills over the course of gameplay.

While such methods have been successful in balancing
difficulty, boosting player engagement and performing pro-
gression analysis, they typically associate a level with a
single difficulty rating or a single set of required skills meant
to capture the challenge posed by the level both in terms of
the in-game mechanics needed to complete it as well as the
human computation task it is modeling. Though not prob-
lematic for HCGs where game mechanics are tightly cou-
pled with the nature of the computation task being modeled,
using such singular measures of difficulty may be more re-
strictive than necessary in HCGs where this coupling is
more loose. In such HCGs, players may possess varying
degrees of competence in executing in-game mechanics
and performing the computation task. Thus, using a single
rating or set of skills for levels and players may match play-
ers with levels that are suitably challenging in terms of the
mechanics of the game but that model tasks that may be
too difficult and vice-versa.

In this paper, we introduce a disjoint skill model that tracks
ratings and skills (i.e., a Glicko-2 rating and a skill chain)
separately for game levels and tasks. Under this model,
each player has two sets of ratings and skills—one corre-
sponding to their abilities with respect to the game’s me-
chanics and the other to their competence in performing the
tasks. Thus, the model consists of two parallel DDA sys-
tems, one determining which game level to serve the player
and the other determining which task to serve on top of the
level. By separating game and task in HCGs where game
and task mechanics are not closely related, we can perform
more fine-grained DDA ensuring that both levels and tasks
are appropriately balanced given the player’s current abil-
ities. We demonstrate this model using the 2D platformer
HCG Iowa James: Hunter Collector Gatherer. Our results
show that compared to a baseline skill model where levels
have fixed tasks, the disjoint model enabled players to ex-
hibit better task performance while performing similarly in
terms of the game mechanics.

Background
Human Computation Games
The design of most HCGs is centered around the prob-
lem they are trying to solve resulting in mechanics that
are tightly coupled with the task being modeled. Thus the
principal focus behind the design of many such games is
to enable players to solve problems and not necessarily
to maximize their engagement and experience. Jamieson
et al. [12] thus argues for adopting commercial and main-
stream game genres to model human computation tasks by
discovering isomorphic relationships between human com-
putation problems and mechanics of popular game genres.
However, Krause et al. [15] discuss disjoint human compu-
tation game design and demonstrate the game OnToGalaxy
whose space shooter mechanics are unrelated to its task
of populating an ontology. Other examples of such HCGs



are the Landspotting games [28] that consist of a strategy
game, a tower defense game, a tagging game and a tile-
based game, all for the task of labeling land cover data.
Most similar to the game that we used is Gwario [25], a
platformer based on Super Mario Bros. [6], where the task
is to correctly identify items given the purchasing location.
Tuite [29] refers to such HCGs as having orthogonal me-
chanics, i.e. mechanics that do not directly serve the task
as in the type of HCGs for which our disjoint model would
be useful. Tuite warns against obfuscating the underlying
purpose of the HCG with such mechanics and recommends
making the game’s problem statement more explicit to play-
ers, citing ethical concerns and arguing that players are
likely to be more invested in the game if they better under-
stand its underlying goals. A disjoint model, as presented
here, could be useful towards this end since by tracking
game and task difficulty separately, players may become
more proficient at performing the task and thereby gain a
better understanding of the game’s underlying objectives.

Skill Chains and Rating Systems in HCGs
Cook [2] describes a skill chain model, which defines atomic
game skills and the dependencies between them. Prior
work has utilized skill chains to define and analyze diffi-
culty progressions within HCGs. Horn et al. [10] used the
skill chain of the 2D puzzle HCG Foldit to design AI agents
simulating players of varying levels of competence and
used them to analyze different level progressions of the
game. Along with skill chains, player rating systems have
also been used in HCGs for balancing difficulty specifically
via using the Glicko-2 [8] system to perform player-versus-
level matchmaking [24]. Prior applications of these methods
within HCGs however have assumed the modeled task to
be an implicit component of each level and assigned rat-
ings and skills to levels and tasks taken together as a single
unit. Our disjoint model extends existing applications of skill

chains and rating systems by assigning skills and ratings to
levels and tasks separately to be more suited to HCGs with
a disjoint design as described previously.

Dynamic Difficulty Adjustment (DDA)
Outside of HCGs, much prior work has focused on DDA
(i.e. dynamically altering in-game difficulty based on player
ability) using techniques such as, among others, machine
learning [13], modifying level design [4], player modeling
[32] and systems such as Hamlet [11] which modify the
game world based on evaluations of player performance.
While we used skill chains and player rating systems in this
work due to their previously mentioned benefits for DDA in
HCGs, future work could consider incorporating elements of
the above DDA approaches.

Educational Games
The player models we use have much in common with
learner models used in education games and intelligent
tutoring systems. In particular, knowledge tracing [3] es-
timates the likelihoods that a learner has mastered spe-
cific skills, and item response theory [20] estimates learner
skill based on performance. Many models have proposed
to extend these approaches [1, 18, 31]. Several educa-
tional games could lend themselves to such disjoint models,
which allow game and educational aspects to be handled
independently. For example, prior work has explored tech-
niques for optimizing the mathematical content of a game
meant to teach numberlines [16, 17]. Pelánek et al. [19]
propose a learner model (among others) that uses multiple
Elo ratings [7] to model both a learner’s global skill and their
skill at specific concepts. From this perspective, our disjoint
model could be considered to have concepts for the game
and the task.



Game and Task
For this work, the game used was Iowa James: Hunter Col-
lector Gatherer, a 2D platformer HCG similar to Gwario [25]
and based on Iowa James: Treasure Hunter [23]. Players
have to collect items that are relevant to a given scenario as
indicated by the UI. A screenshot of the game is shown in
Figure 1. Levels feature items that players need to collect
and hazards that they must avoid in order to reach a trea-
sure chest at the end. The goal of each level is to unlock
the treasure chest by collecting all items relevant to the sce-
nario and then reach the opened chest to move to the next
level. Players have three lives per level and lose a life either
when they collect an irrelevant item or come in contact with
a hazard. The skill chain for the game comprises of typical
platformer mechanics and include:

• jumping, moving: typical platformer movement
• hazard-static, hazard-moving: jumping over static and

moving hazards respectively
• platforming: traversing platforms via jumping/moving
• platforming-hazard : traversing platforms with hazards
• timed-one, timed-two: traversing timed hazards with

short and long lengths respectively

Figure 1: Iowa James screenshot.
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Figure 2: Iowa James skill chains
used in this work.

The task for this work was that of collecting all items rele-
vant to a presented scenario while avoiding the irrelevant
ones. Such a task, which can be viewed as an application
of the broader task of item classification or tagging, is one
for which the ground truth is known and is thus suitable as
a test task for HCG research [25, 26, 27]. We used 5 possi-
ble scenarios - Grocery Store, Pastry Shop, Clothing Store,
Sports Store and Hardware Store with players required to
collect either 3, 5 or 7 relevant items while avoiding 3, 5 or 7
irrelevant items respectively. Each skill in the task skill chain
corresponds to collecting a certain number of items relevant
to a specific scenario with collecting 7 items of a scenario
being dependant on collecting 5 of that scenario, which in

turn depends on collecting 3 of that scenario. Both game
and task skill chains are depicted in Figure 2.

Both the player’s game and task scores ranged from 0 to
1 and consisted of two parts. For game score, the player
earned 0.5 for reaching the treasure chest at the end, with
or without having opened it, while the other 0.5 was propor-
tional to the number of times they died due to a hazard. For
task score, the player received 0.5 for opening the chest by
collecting all relevant items with the other 0.5 being propor-
tional to the ratio of relevant to irrelevant items collected.

Method
In this section we describe our disjoint skill model. This
involves 3 stages: 1) Skill chain definition for both game
and task 2) Annotation and initialization of game levels and
tasks and 3) Matchmaking to determine which level and
task to serve the player. Each of these is described below.

Game and Task Skill Chain Definition
First, we define separate skill chains for the game and the
task. Skill chains can be represented as directed graphs
where each node corresponds to a skill and edges be-
tween nodes correspond to dependencies between skills.
If there exists an edge from node A to B, then the skill rep-
resented by node B depends on that represented by A. For
this work, we manually defined both the game and the task
skill chains which are depicted in Figure 2.

Annotation and Initialization
After defining the skill chains, the model must be informed
about the game levels and tasks for matchmaking. This
involves annotating levels with the game skills needed to
solve them and initializing each level and task with a default
Glicko-2 rating of 1500. Note that each skill in the task skill
chain corresponds to a separate task whereas a level may
require any number of skills from the game skill chain.



Level and Task Matchmaking
Once levels and tasks have been initialized, they can be
used for matchmaking. In the disjoint model, matchmaking
involves two DDA systems running in parallel—one to deter-
mine which level to serve the player and the other to deter-
mine which task to serve. Each player is thus assigned two
ratings and two sets of skills, one each for the game DDA
system and the task DDA system. Both these ratings are
initialized to 1500 and both sets of skills are initially empty.

To determine the levels eligible for serving, the system first
filters those levels that the player has already beaten and
the immediately previous level they played. From those left,
levels requiring exactly one additional game skill not in the
player’s current set of acquired skills are deemed eligible
to be served. If such a level is not found, the system looks
for levels that require two additional skills and so on, until
an eligible level is found. If the player has acquired all game
skills, then all unbeaten levels are eligible.

Task eligibility is determined similarly except that instead
of the game skill chain, the task skill chain is used and we
don’t filter out tasks based on if they’ve been completed
previously or if it was the last task that the player encoun-
tered. Thus task eligibility was determined solely based on
task skills that the player had acquired at that point.

From among the eligible levels and tasks, the specific level
and task to serve to the player are determined by compar-
ing the Glicko-2 ratings with the player’s Glicko-2 rating, for
both the game and the task. The level and task are picked
independently, by calculating the player’s desired loss rate
(DLR) for each, which represents the desired probability the
player will not successfully complete the game level or task
they are matched with. The DLR for a player with rating r is
given by the equation DLR(r) ≈ 1/(1 + e0.00628(1850−r)),
which starts players out trying to assign them levels and

tasks they only have an estimated 10% chance of losing.
As the player’s rating, and thus ability, improves, the DLR
goes up, causing the player to be matched with more dif-
ficult levels and tasks. Details of DLR-based PvL match-
making can be found in [22]. After computing the two DLRs,
we calculate the player’s loss probability against each eli-
gible game level and each eligible task using the Glicko-2
expectation function [8]. We then independently select the
level and task for which their loss probability is closest to
the corresponding DLR and serve these to the player.

The player then plays through the served level while per-
forming the served task. Each such instance is treated as
two matches occurring simultaneously—player-vs-level and
player-vs-task. Separate game and task scores are com-
puted for the player for each match depending on how well
they navigate the level and perform the task respectively. If
the game score is more than 0.5, then the player’s list of ac-
quired game skills is updated with the additional skill(s) re-
quired by that level. Similarly if the task score is more than
0.5, that task is added to the player’s list of acquired task
skills. The game score is also used to update the player’s
game rating and the level’s rating while the task score is
used to update the player’s task rating and the task’s rating.

Joint Model
In order to evaluate the disjoint model, we also defined a
“joint” skill model for comparison. This model uses only the
game skill chain and assigns ratings to only the levels, ig-
noring tracking of the skills and ratings of tasks. Conse-
quently, players are assigned a single game rating and a
single set of acquired game skills. In this joint model, the
level to be served is still determined dynamically as in the
disjoint model, but each level is associated with a fixed task,
which were manually chosen to associate tasks requiring
more skills with levels requiring more skills. Similarly, only



the game score is used to update the player’s rating and
skills in this model.

Evaluation and Discussion
To compare the two models, we ran a Human Intelligence
Task (HIT) on Amazon Mechanical Turk which recruited 300
players and randomly assigned each to one of the models.
The HIT paid $1.25 but players were paid prior to playing
and could choose to not play and just take the payment
[21]. We ended up with data for 279 players with 136 and
143 assigned to the disjoint and joint models respectively.

Joint Disjoint

N 143 136

Relevant items (p = .17)
median 15 16
mean 28.8 34.5

Irrelevant items (p = .89)
median 8 9
mean 17.3 16.1

Max task size (p < .001)
median 3.0 3.0
mean 2.9 4.0

Max level skill chain magnitude
(p = .12)

median 3 3
mean 2.9 3.1

Levels completed (p = .39)
median 3 3
mean 3.5 3.9

Table 1: Summary values for
metrics along with results of
Wilcoxon Rank-Sum tests. Values
in bold were significantly different.

Figure 3: Distribution of Max Task
Size for conditions.

For each player, we looked at Total Relevant Items Col-
lected, Total Irrelevant Items Collected, Max Task Size, Max
Level Skill Chain Magnitude and Levels Completed. Max
Task Size refers to the highest number of relevant items of
any scenario that the player was able to collect and could
be either 0, 3, 5 or 7. Similarly, Max Level Skill Chain Mag-
nitude is the highest number of skills in the skill chain of
any level that the player was able to complete. Results of
these comparisons are given in Table 1. For each metric,
we ran a Wilcoxon Rank-Sum Test. We found significant dif-
ferences between players in the two conditions in terms of
Max Task Size (p < .001). The distribution of all possible
Max Task Size values for players in each condition is shown
in Figure 3. Since Max Task Size is effectively a measure of
how well players progress along the task skill chain, these
results suggest that players under the disjoint model were
better at acquiring and demonstrating task skills than those
under the joint model. Note that, though not significant, the
related metric of Relevant Items Collected, was also higher
for the disjoint model. Overall, based on these results, com-
pared to the joint model, the disjoint model seems to enable
players to advance further in terms of task complexity, with
players reaching and completing tasks that require a signifi-
cantly greater number of relevant items to be collected.

These results demonstrate the potential utility of the disjoint
skill model. Though the joint model dynamically serves lev-
els based on the player’s acquired game skills and game
ratings, by not tracking task skills and ratings, it may cause
players to either attempt tasks beyond their capabilities,
or never reach more advanced tasks that they could have
completed. As a result, players fail to acquire more complex
task skills despite making progress in terms of the skills
related to the game’s mechanics, becoming proficient in
navigating levels but not in performing the tasks they model.
By taking task skills and ratings into account separately, the
disjoint model addresses this issue and enables players to
make progress both in terms of the mechanics of the game
and the computation task the HCG represents.

Conclusion and Future Work
We presented a skill model that separately tracks player
skill for game and task in human computation games, par-
ticularly suited towards HCGs following a disjoint design
where the particulars of the task are not directly linked to
the mechanics of the game used to model it. Based on our
results, a disjoint skill model enables players to exhibit bet-
ter task performance than a joint model that does not take
task skill specifically into account. Since this work applied
the disjoint model only to one HCG and used one task, fu-
ture work should look into testing its performance on other
types of HCGs and tasks more complex than item collec-
tion. Additionally, the skill chains for both game and task
were constructed by hand. Future work could investigate
inferring such skill chains using automated methods.
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