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ABSTRACT
Player engagement within a game is often influenced by
its difficulty curve: the pace at which in-game challenges
become harder. Thus, finding an optimal difficulty curve is
important. In this paper, we present a flexible and formal ap-
proach to transforming game difficulty curves by leveraging
function composition. This allows us to describe changes
to difficulty curves, such as making them “smoother”, in a
more precise way. In an experiment with 400 players, we
used function composition to modify the existing difficulty
curve of the puzzle game Paradox to generate new curves.
We found that transforming difficulty curves in this way
impacted player engagement, including the number of levels
completed and the estimated skill needed to complete those
levels, as well as perceived competence. Further, we found
some transformed curves dominated others with respect to
engagement, indicating that different design goals can be
traded-off by considering a subset of curves.
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1 INTRODUCTION
The difficulty curve of a game defines how the game’s dif-
ficulty changes over the course of gameplay. In most situ-
ations, the in-game difficulty should ideally be compatible
with the player’s current level of skill so that the player is
neither overwhelmed by challenges beyond their capabilities,
nor bored by challenges too simple to overcome [4]. Thus,
defining an optimal curve that presents challenges having
difficulties commensurate with player skill is an important
game design problem. Traditional methods of finding such a
curve involve the designer creating an initial curve which is
then refined using an iterative process of playtesting [1].
In this paper, we present a method of such curve refine-

ment by modeling transformations to a game’s difficulty
curve as function composition. Function composition allows
multiple functions to be composed into one by applying one
function to the output of another. Given two functions f (x)
and д(x), the composition of the functions f ◦ д is f (д(x)).
This allows us to treat the difficulty curve largely as a black
box, only needing to know a few parameters, and use func-
tion composition to adjust its inputs and outputs. Doing so
also allows us to more precisely describe relative difficulty
curves and formalize what it means to, for example, “steepen”
or “smooth” a game’s difficulty curve. This is similar in spirit
to Swink’s approach to formalizing “game feel” [20] (e.g.
what does it mean for controls to feel “floaty”?). Moreover,
using functions to transform curves, as opposed to manual re-
finement, helps capture a potential space of possible difficulty
curves that can be explored by applying transformations.
Such transformations could give us an approach to consid-
ering changes to difficulty curves in a game-independent
manner. In addition to moving toward formalizing curve
transformations and giving them more precise definitions,
the use of functions opens up the possibility of combining
such precisely defined curves to generate new curves with
precise definitions.
Additionally, we conducted an experiment to test the ef-

fects that such curve transformations have on player engage-
ment. Specifically, we applied function composition to trans-
form the difficulty curve of the human computation puzzle
game Paradox (a screenshot of the game is given in Figure
1) to see what changes in engagement would be brought
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Figure 1: A screenshot of Paradox.

forth by different transformations and if any such transfor-
mation would further improve the engagement benefits that
the heuristically-defined existing curve had demonstrated
in previous work [17]. We found that different curve trans-
formations do in fact impact gameplay and engagement. We
also identified a set of Pareto efficient [13] transformations
for somemeasures of engagement, i.e. transformed curves for
which it is not possible to increase one engagement measure
without decreasing another.

2 BACKGROUND
Engagement and Flow
Difficulty curves aim to tune game difficulty so as to optimize
player engagement. Engagement refers to a concept in the
psychology of motivation that attempts to capture how en-
grossed a person feels in the performance of a task. It draws
from Csikszentmihalyi’s flow theory [4] which says that one
is optimally engaged when in the flow state—a state of mind
characterized by deep immersion in an activity coupled with
a strong motivation to do it well. Thus, games seek to opti-
mize player experience by pushing players toward such a
flow state in order to keep them engaged and entertained.
Most often, games do this via difficulty balancing, i.e. adjust-
ing the challenge posed by in-game levels so as to match the
skill level of the player. In other words, challenging players
with tasks that are neither too difficult so as to not frustrate
them, nor too easy so as to not bore them, thereby keeping
them within the flow state. Such difficulty balancing meth-
ods can take many forms, including pre-release playtesting,
dynamic adjustment during gameplay, or analysis of diffi-
culty curves, i.e. comparing different difficulty progressions,
as in this work.

Dynamic Difficulty Adjustment
Rather than presenting every player with the same difficulty,
some games tailor the difficulty presented to each player
using dynamic difficulty adjustment (DDA). DDA is a general
term for techniques used to dynamically modify in-game
difficulty during the course of gameplay as a means to tailor
the experience more toward the player’s current level of play.
This has been achieved in games through various techniques
such as parameter tuning [8], modifying level design [3],
machine learning [10], the use of rating systems [19] and
player modeling [22].

Learning Curve Analysis
Similar to difficulty curves, learning curves focus on the rate
at which skills are acquired by players rather than on the
progression of difficulty. These curves are often used in ana-
lyzing the pace and challenge presented within educational
or puzzle games, as done by Linehan et al [11]. Harpstead et
al. [7] demonstrated the use of such learning curve analysis
to analyze an educational game and discovered changes that
could be made to improve the game’s design to enable it to
achieve its teaching goals more effectively. Similarly, ana-
lyzing and improving upon a game’s difficulty curve would
help improve its difficulty progression. While several DDA
techniques have also been employed to tailor the difficulty
curve appropriately as mentioned in the previous section,
to the best of our knowledge, ours is the first work that ex-
plores the use of function composition to transform difficulty
curves, with Jacob [9] only briefly mentioning the feasibility
of doing so.

Difficulty Balancing in Human Computation Games
For our experiment, we used the human computation game
(HCG) Paradox. HCGs are games that aim to leverage the
collective abilities of players in order to solve computation-
ally intractable problems. Levels within HCGs, on account
of modeling unsolved real world problems, are not readily
amenable to traditional DDA techniques since their diffi-
culties are unknown in advance and they cannot be easily
modified without compromising their link to the underlying
problem [2]. Past work [17] has shown that such barriers can
be overcome by mapping player skill and level difficulty to
a common rating system such as Glicko-2 and then using a
matchmaking algorithm to serve levels to players in an order
that enhances engagement. Through such an ordering, the
rating system thus defines a skill-dependent difficulty curve
for the game. However, in previous work, the curve was de-
fined heuristically and its fitness tested against baselines that
did not fully leverage the ratings system. While other work
[16] demonstrated improved engagement by offering ratings-
based skill feedback to players, no modifications were made
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Curve Parameters Description
ri = 1500 Player’s starting rating

(Glicko-2 starting rating)
rd = 350 Rating scale factor

(Glicko-2 initial rating deviation)
ω = 0.1 Desired loss rate for starting

player

Baseline Curve Description
f (x) = 1

1+eα (β−x ) Logistic curve
β = 1850 Set so f (ri + rd ) = 0.5
α ≈ 0.00628 Set so f (ri ) = ω

Transformation Functions Description
tδ (x) = x + δ Translate by δ
sσ ,c (x) = σ (x − c) + c Scale by σ around c

Table 1: Difficulty curve-related functions and param-
eters.

to the curve itself to see if orderings in which levels were
served, and thereby engagement, could be improved further.

Based on prior related work, we formulated the following
hypothesis for our experiment: Transforming the difficulty
curve of a game using function composition impacts player
behavior and experience, with different transformations leading
to different player behavior and experience.

3 GAME DESCRIPTION
Levels in Paradox are puzzles derived fromMAX-SAT boolean
constraint satisfaction problems. Player moves within the
game involve using various tools to change boolean values
to satisfy constraints. The player’s score for a level is the
percentage of all constraints that are satisfied; the player’s
goal is to achieve a target score for the level. A level is con-
sidered attempted if the player makes at least one move and
completed if the player is able to reach the target score for
that level.

The game uses a difficulty curve-based matchmaking sys-
tem to determine the next level that is served to a player as
they progress through the game and uses the Glicko-2 rating
system [6] for matchmaking between players and levels. Us-
ing Glicko-2, each player and level is assigned a rating. These
ratings can be updated over time based on the outcomes of
player attempts at levels. Ratings can be used to estimate
a player’s chance of losing a level, i.e. the level’s difficulty
for that player. We may consider that a level’s rating is an
estimate of the player skill needed to complete the level, and
the lower a player’s rating is relative to a level’s rating, the
more difficult that level will be for them. Level ratings were

Curve
Name

Function Description

BASELINE f baseline curve
INFLATE f ◦ trd inflate difficulty via shifting curve

left by a constant

DEFLATE f ◦ t−rd deflate difficulty via shifting curve
right by a constant

STEEPEN f ◦ s2,ri steepen difficulty by increasing
curve’s rate of change

SMOOTH f ◦ s0.5,ri smooth difficulty by decreasing
curve rate’s rate of change

INVERT s−1,0.5 ◦ f invert difficulty by flipping curve
upside down

FIX@50 t0.5 ◦ s0,0 ◦ f fix difficulty at 50% loss chance

FIX@START tω ◦ s0,0 ◦ f fix difficulty at starting difficulty

Table 2: Overview of the difficulty curves used and
their representation as function compositions.
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Figure 2: Plot of the different difficulty curves used.

computed in previous work and kept fixed during this exper-
iment while player ratings were updated over the course of
gameplay. Each player starts with a default rating of 1500.
If a player completes a level, it is considered a win for the
player and their rating goes up. If they forfeit a level (i.e.
attempt it without being able to complete it), it is consid-
ered a loss for the player and their rating goes down. The
player’s rating goes up or down by an amount proportional
to the rating of the level. In this way, the difficulty of the
game adapts to each player’s skill level as it changes over
time. More detailed descriptions of both the game and the
matchmaking system can be found in prior work [5, 17].

4 CURVE TRANSFORMATIONS
In this work, we consider a difficulty curve as a function
that maps from player skill to difficulty. Here, player skill
is represented by the player’s Glicko-2 rating and difficulty
refers to the desired loss rate i.e. the desired probability of the
player losing the level at their current skill rating. This rate is
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a measure of the difficulty since it determines how hard the
level will be for the player to complete. Thus, the difficulty
curve can be given by the function d : R → [0, 1]. We can
further characterize a difficulty curve using a few generic
parameters: ri , the skill rating of a starting player; rd , a rating
scale factor (derived from the rating system); and ω, the loss
rate for a starting player. For our specific baseline curve, we
used a logistic function, similar to the one used in past work
involving Paradox, that smoothly increases difficulty as a
player’s rating increases. Details on the specific parameters
and functions used are given in Table 1.
The baseline difficulty curve and the transformed curves

obtained using function composition are listed in Table 2.
The name of each new curve indicates how it transforms the
difficulty progression of the game relative to the BASELINE.
This is done by applying the transformation functions to ei-
ther the input (i.e. the player’s current rating) to the baseline
function f as in INFLATE, DEFLATE, STEEPEN and SMOOTH, or
its output (i.e the desired loss rate) as in INVERT, FIX@50 and
FIX@START. Specifically, to obtain INFLATE and DEFLATE, we
translate the baseline curve along the x-axis (i.e. shift the
player rating to the left and right respectively). This causes
the player’s desired loss rate to be higher and lower respec-
tively for the same rating, thereby inflating (i.e. making the
game harder) or deflating (i.e. making the game easier) the
base curve, hence the naming. Similarly, for STEEPEN and
SMOOTH, the player rating is scaled to double and half, caus-
ing the base curve to be steeper (i.e. increasing the rate at
which the game gets harder) or smoother (i.e. decreasing this
rate) respectively. INVERT simply flips the base curve upside
down by applying scaling to the desired loss rate output by
f while FIX@START and FIX@50 always serve levels that the
player has a 10% (ω) and 50% chance of losing, respectively.
A plot of the eight curves is shown in Figure 2.

5 DATA COLLECTION
To gather data, we ran a Human Intelligence Task (HIT) on
Amazon Mechanical Turk. The HIT paid $2 and recruited
400 players who were randomly assigned one of the 8 dif-
ficulty curves in Table 2. The version of Paradox used in
our experiment required players to play though 8 tutorial
levels. These tutorial levels did not affect player rating and
were not used in our analysis. After the tutorial, players
could play any number of 50 challenge levels, which they
could either skip (i.e. not make any moves before moving
to next level), forfeit (i.e. make at least 1 move but fail to
complete the level) or complete. After failing to complete
(i.e. skipping and/or forfeiting) 3 levels, players could fill out
a survey based on the Intrinsic Motivation Inventory (IMI)
[14] to finish the HIT. Previous work has shown that players
recruited through Mechanical Turk can respond similarly to
experiments as volunteer players [15].

For each player, we recorded Time (spent playing levels),
Levels Attempted (those not skipped), and Levels Completed,
as well as the Final Player Rating (player’s rating when they
finished the HIT) and the Highest Level Rating (rating of
the highest rated level that the player completed). The sur-
vey contained the IMI subscales for Interest/Enjoyment (scale
of 7 to 49), Perceived Competence (scale of 6 to 42), and Ef-
fort/Importance (scale of 5 to 35). 55 players did not complete
any challenge levels and were excluded from Highest Level
Rating analysis while 4 players had errors in their surveys
and were excluded from survey variable analysis.

6 CURVE COMPARISONS AND DISCUSSION
Due to non-normality of recorded variables, as indicated by
a Shapiro-Wilk normality test, we used the non-parametric
Aligned Rank Transform [21]. For each variable, we first ran
an omnibus ANOVA comparison of all curves. If that was
significant, we then ran a full post-hoc pairwise comparison
with the Tukey method. We used α = .05. Results of our
analyses comparing curves are given in Table 3.

Our analyses revealed that transforming difficulty curves
did impact player engagement in terms of the variables that
we measured, thereby supporting our hypothesis that dif-
ferent curve transformations would affect player behavior
and experience differently. We found significant omnibus dif-
ferences across curves for all variables except Player Rating
and Effort/Importance and significant post-hoc differences
for all other variables except Interest/Enjoyment. The latter
may speak to the game not being very enjoyable, as can be
the case with HCGs in general, on account of having to bal-
ance being fun with staying true to the underlying problem.
Interestingly, this highlights that though different curves
led to players exhibiting different behavior and reporting
varying levels of competence, these curves did not seem to
affect how much players subjectively enjoyed the game.

Looking at Time, players spentmore time playing a SMOOTH
difficulty curve than a curve that had a FIX@START “easy”
difficulty. This may indicate that some ramp-up in diffi-
culty is more engaging. For Levels Completed, Levels At-
tempted, and Perceived Competence, the general trend appears
to be that these were increased by making the curve “easier”.
DEFLATE was always significantly greater than INFLATE. On
the other hand, the trend for Highest Level Rating seems to
be that it was increased by making the curve “harder”. These
trends make some intuitive sense as in an easier game, play-
ers would be expected to attempt and complete more levels
while feeling more competent, but the levels they complete
would have lower ratings. This is similar to the findings
of Lomas et al. [12] which suggest that players are more
engaged and play for longer when the game is easier.
It is worth noting that all the curves do not start at the

same difficulty. Thus, one question is if it is the starting
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Time (s)
FIX@START 413 (256) a

INFLATE 433 (256) ab

INVERT 516 (358) ab

FIX@50 527 (372) ab

BASELINE 610 (352) ab

STEEPEN 618 (323) ab

DEFLATE 682 (417) ab

SMOOTH 762 (544) b

Levels Completed
INVERT 0.0 (0.0) a

INFLATE 2.0 (1.0) a

FIX@50 3.0 (2.0) a

STEEPEN 4.5 (1.5) b

FIX@START 5.0 (3.0) b

BASELINE 7.0 (3.0) bc

SMOOTH 8.0 (3.5) bc

DEFLATE 14.0 (9.0) c

Levels Attempted
INFLATE 4 (2) a

INVERT 4 (1) a

FIX@50 5 (2) ab

FIX@START 6 (4) c

STEEPEN 7 (2) abc

BASELINE 10 (3) cd

SMOOTH 10 (4.5) cd

DEFLATE 15 (9) d

Final Player Rating
INVERT 1421 (77)
BASELINE 1466 (189)
FIX@50 1545 (155)
INFLATE 1573 (165)
SMOOTH 1573 (193)
FIX@START 1611 (154)
STEEPEN 1621 (145)
DEFLATE 1642 (209)

Highest Level Rating
FIX@START 1222 (153) a

BASELINE 1260 (175) ab

DEFLATE 1328 (259) a

SMOOTH 1416 (108) ab

INFLATE 1517 (363) bc

STEEPEN 1587 (276) bc

FIX@50 1587 (118) c

INVERT 1880 (140) c

Interest/Enjoyment
FIX@50 26.5 (7) a

INFLATE 28 (6.5) a

FIX@START 29 (6) a

STEEPEN 31.5 (5.5) a

INVERT 32 (11) a

BASELINE 32 (6) a

SMOOTH 33 (7) a

DEFLATE 33 (8) a

Perceived Competence
FIX@50 16 (7) a

INFLATE 17 (8) ab

INVERT 23 (10) abc

BASELINE 25 (5.5) abc

STEEPEN 25 (6) c

FIX@START 26 (5) bc

SMOOTH 28 (6) c

DEFLATE 28 (5) c

Effort/Importance
INFLATE 25 (4.5)
INVERT 25 (6)
FIX@START 28 (5)
DEFLATE 28 (3)
BASELINE 28.5 (4.5)
STEEPEN 28.5 (5.5)
SMOOTH 29 (4)
FIX@50 30 (4.5)

Table 3: Summary of data and analysis. For each variable, median and median absolute deviation (in parenthesis)
are shown. Letter superscriptsabcd show post-hoc significance groups; that is, variables sharing a letter were not
significantly different. Final Player Rating and Effort/Importance did not have a significant omnibus test and thus
post-hoc tests were not run.

difficulty that accounts for these differences rather than
the change in difficulty due to the curves. If we look at
the three curves that start at a difficulty above ω (INFLATE,
FIX@50, and INVERT), there were no significant differences
between them. Looking at the curves that start at difficultyω
(BASELINE, SMOOTH, STEEPEN, and FIX@START), most of the
differences are not significant. However, for Time, FIX@START
was different from SMOOTH, and for Highest Level Rating,
FIX@START was different from STEEPEN. Only one curve
started with difficulty below ω (DEFLATE). Therefore, we
did see cases where the curve of difficulty change makes a
difference; in these cases, it appears that increasing difficulty
with skill is preferable to a fixed difficulty.

7 PARETO EFFICIENCY
Human computation games (HCGs) aim to enable players to
maximize the number and/or quality (i.e. accuracy, useful-
ness) of in-game tasks that they complete [18]. Thus, HCG
designers may wish to trade off between the amount of work
done and its quality (in our case, level ratings, since higher
rated levels are harder and thus may be less amenable to be-
ing solved by automated methods). From our analyses, com-
paring Levels Completed and Highest Level Rating revealed
four of the difficulty curves (INVERT, STEEPEN, SMOOTH and
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Figure 3: Plot of the variables Levels Completed against
Highest Level Rating for the difficulty curves. The darker
dashed line shows the Pareto frontier of curves examined
for these variables. The frontier is defined by the curves
INVERT, STEEPEN, SMOOTH and DEFLATE. The lighter solid lines
connect curves that were not found to be significantly dif-
ferent for either of these two variables.

DEFLATE) to be Pareto efficient for these two variables—that
is, the other curves were dominated by these four. A plot
demonstrating the Pareto efficiency of the curves is shown
in Figure 3. Looking at the significance groupings, we also
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found four triplets of curves, namely (INVERT–INFLATE–
FIX@50, STEEPEN–BASELINE–SMOOTH, SMOOTH–FIX@START–
BASELINE and DEFLATE–SMOOTH–BASELINE), whichwere not
significantly different from each other for these two vari-
ables. These perspectives suggest that different design goals
may be traded off by considering only a subset of the trans-
formed curves. Interestingly, though the differences were
not significant, the original BASELINE was outperformed by
SMOOTH and DEFLATE in terms of both variables, suggesting
that these might be better difficulty curves for Paradox in
the future, and speaking to the potential usefulness of this
technique for exploring the space of difficulty curves.

8 CONCLUSION AND FUTUREWORK
In this paper, we demonstrated a formal approach to trans-
forming a game’s difficulty curve by modeling it as function
composition. This enabled us to modify the existing curve of
the game Paradox to generate new curves for the game and
give mathematically precise definitions to how each curve
modified the original curve. Our experiment revealed that
the transformed curves impact gameplay significantly and
that some of them improve player engagement compared to
the game’s existing difficulty curve. We consider a number
of avenues for future work.

In our experiment, we used the difficulty curves to adapt
the game on a per-level basis but this could be done in other
ways such as on a per-section basis in a procedurally gener-
ated platformer. Additionally, our baseline difficulty curve
was monotonic and we used simple functions during com-
position. In the future, it is worth exploring more complex
and/or non-monotonic functions (e.g. ln and sin) as baselines
and transformations. Also worth investigating in the future
is combinations of different transformations (e.g. “steepen
and deflate”). The parameters of the transformation func-
tions also define a space of possible curve transformations,
presenting the possibility for optimization and evolving an
optimal difficulty curve for a given game. Finally, while this
work transformed the difficulty curves of one game, it may
be possible to determine a transformation between difficulty
curves of multiple games and discuss their relative properties
(e.g. “game X has an inflated difficulty curve compared to
game Y”).
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