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Fig. 1: Example blended Zelda–Metroid–Mega Man level

Abstract—Variational autoencoders (VAEs) have been used in
prior works for generating and blending levels from different
games. To add controllability to these models, conditional VAEs
(CVAEs) were recently shown capable of generating output that
can be modified using labels specifying desired content, albeit
working with segments of levels and platformers exclusively.
We expand these works by using CVAEs for generating whole
platformer and dungeon levels, and blending levels across these
genres. We show that CVAEs can reliably control door placement
in dungeons and progression direction in platformer levels. Thus,
by using appropriate labels, our approach can generate whole
dungeons and platformer levels of interconnected rooms and
segments respectively as well as levels that blend dungeons and
platformers. We demonstrate our approach using The Legend of
Zelda, Metroid, Mega Man and Lode Runner.

Index Terms—PCGML, variational autoencoder, level genera-
tion, game blending

I. INTRODUCTION

Among the many approaches for Procedural Content Gen-
eration via Machine Learning (PCGML) [1], variational au-
toencoders (VAEs) [2] have been used in several recent works
for generating levels [3], [4] as well as blending levels across
different games [5], [6]. VAEs consist of encoder and decoder
networks that learn to map data to and from a continuous
latent space respectively. Once trained, the latent space can be
sampled to generate new data. While shown to be effective
in generating and blending levels for several games, standard
VAEs work with fixed size inputs/outputs, thus forcing models
to train on and thereby generate level segments rather than
whole levels, due to the dearth of training data for games.
Additionally, VAEs enable generation via random sampling



Zelda - 〈1,1,1,0〉 Lode Runner - 〈0,1,1,0〉

Mega Man - 〈0,0,1,1〉 Metroid - 〈1,1,0,1〉

Fig. 2: Example segments with corresponding directional
labels indicating doors/openings in 〈Up,Down,Left,Right〉.

of latent space vectors, thus methods such as latent vari-
able evolution [7] have been used to add controllability by
searching for latent vectors that satisfy certain properties.
Alternatively, conditional VAEs [8] augment regular VAEs by
allowing them to be trained using labeled data and thus enable
the generation of outputs conditioned by specific labels. This
obviates having to run evolutionary search post-training and
enables controllability via the training process itself. Prior
work [9] explored the use of CVAEs for PCGML, finding
them capable of generating outputs with desired elements and
patterns as well as blending outputs across games. However,
this was limited to level segments and like much PCGML
research, was restricted to the platformer domain.

In this paper, we expand on the above work by using con-
ditional VAEs to generate entire levels and do so for multiple
genres. Specifically, we show that by having the conditioning
labels indicate the direction of door placement in dungeon
rooms and progression in platformer level segments, we can
generate rooms and segments with orientations that enable
them to be reliably connected in order to form whole levels.
Moreover, this also enables us to generate levels consisting
of both dungeon rooms and platformer level segments, thus
enabling blending levels from different genres unlike prior
PCGML blending work which did so only across different
platformers. We demonstrate our approach using levels from
the platformers Metroid and Mega Man, the puzzle platformer
Lode Runner and dungeons from The Legend of Zelda. Our
work thus contributes, to our knowledge, 1) a new PCGML
approach for generating whole levels using conditional VAEs
and the first to be applied in multiple genres and 2) the first
PCGML approach for blending levels across different genres.

II. BACKGROUND

A significant body of PCGML research has used variational
autoencoders (VAEs) [2] with most focusing on generating and
blending platformer levels [3], [5], [6], [9]. Advanced models
such as Gaussian Mixture VAEs [3] have also been used for
injecting controllability into vanilla VAE models. Controlla-
bility has been the focus of several PCGML works involving
GANs [10] and VAEs since random sampling of the latent

space does not afford much control. A common approach for
controllability is latent variable evolution [7] which utilizes
evolution to look for latent vectors corresponding to desired
content, as demonstrated for both GANs [11] and VAEs [5].
Relatedly, [12] enabled interactive exploration of a GAN latent
space to evolve desired Mario levels and Zelda dungeons.

Unlike these hybrid approaches that add controllability via
a method separate from training the model, conditional VAEs
(CVAEs) [8] enable control as part of the model itself. When
training CVAEs, each input is associated with a user-specified
label. The encoder and decoder then learn to use these labels,
and thus the information provided by them, to map inputs
to and from the latent space respectively. Prior work [9]
showed that CVAEs can generate levels conditioned on labels
specifying the content and patterns desired to be present in the
levels as well as blend levels from different games by having
the label indicate the games to blend. We build on this by
expanding beyond platformers and generating whole levels.

Generating whole levels is particularly challenging when
working with latent models for two reasons. First, such models
work with fixed size inputs and outputs, and second, the gen-
eral dearth of training data for PCGML necessitating training
on segments rather than whole levels to ensure enough training
data. While generating whole levels by stitching together suc-
cessively generated segments [13] is acceptable for a game like
Mario with uniform progression, this does not work for games
that progress in multiple directions and orientations. This was
addressed in [14] via an approach combining a VAE-based
sequential model and a classifier to generate and then place
a segment relative to the previous one, thus generating whole
levels by an iterative loop of decoding and encoding successive
segments. However this afforded control only via definition of
the initial segment with the orientation of successive segments
and properties of the blend not being controllable. This issue
was also addressed by [15] which focused on generating whole
Mega Man levels by using multiple GANs to model levels
with different orientations. Our work differs in that compared
to [14], each segment and the blend properties are controllable
and compared to [15], we use VAEs and model differences in
orientations with separate labels rather than separate models.
Additionally, we extend beyond the platformer domain.

While most PCGML works have focused on side-scrolling
platformers, a handful have worked with other genres. Doom
levels have been generated using GANs [16] while Lode
Runner levels have been generated using GANs [17], Markov
models [18] and VAEs [4]. Both [19] and [20] generated Zelda
dungeons using Bayes nets. Similar to our use of latent models
to create whole dungeons out of generated rooms, [21] used an
approach that utilized a graph grammar to generate a dungeon
layout and a GAN to generate rooms to fill that layout. Our
work differs in using VAEs and that the properties of dungeon
rooms are determined by conditioning rather than a grammar.

Game blending was proposed by [22] and refers to generat-
ing new games by blending levels and/or mechanics of existing
games. Since then, many works [5], [6], [9], [23] have used
VAEs for blending levels across several platformers though



only working with segments. The approach in [14] generated
whole levels that are blended but without affording control
over blend contents. The method presented in this paper allows
generating whole level blends in a controllable manner in
addition to blending games from different genres. In doing so,
this work constitutes another PCGML approach under com-
binational creativity [24], similar to recent works looking at
domain transfer [25] and automated game generation [26], all
of which blend and/or combine existing domains to generate
content for new ones. Additionally, in being a creative ML
approach for level generation and blending, this work can also
be categorized under the recently defined Game Design via
Creative Machine Learning (GDCML) [27] set of approaches.

III. METHOD

A. Level Representation and Conditioning
We used levels from the action-adventure game The Legend

of Zelda (Zelda), the action platformers Metroid and Mega
Man (MM), and the puzzle platformer Lode Runner (LR), thus
spanning several genres and types of games. Levels were taken
from the Video Game Level Corpus (VGLC) [28] and were
in text format with different characters mapping to different
in-game tiles. The premise that facilitates the use of CVAEs is
that levels in these games are composed of segments connected
together in a meaningful way to enable gameplay. This is
most evident in Zelda where discrete rooms are connected
based on the location of doors but is also true for platformers
where levels can be considered to consist of discrete segments
connected based on the directionality of player movement
through them. Thus, training a CVAE on the discrete segments
while using labels indicating how they can be connected to
other segments should yield a model that can generate whole
levels composed of these interconnected segments. For each
game, labels were binary-encoded vectors of length 4 with
each element corresponding to a direction with 1/0 indicating
that progression in that direction was possible/not possible.
For all games, the order was Up, Down, Left, Right, thus, a
label of 〈1,0,0,1〉 indicated that progression was possible in the
upward and rightward, but not in the downward or leftward,
direction for the corresponding segment.

1) The Legend of Zelda: Training data for Zelda consisted
of the discrete rooms taken from each dungeon in the VGLC.
Rooms in Zelda are 11x16 tiles consisting of a 2-tile perimeter
of wall tiles and a 7x12 playing area. We augmented the
training set by adding horizontally and vertically flipped
versions of each room, if not already present, finally ending up
with a total of 502 rooms for training. Labels for each room
were determined based on the location of the door tiles.

2) Metroid: For Metroid, we extracted 15x16 segments
from the whole levels. Though Metroid levels are not com-
posed of independent rooms like Zelda dungeons, we could
still extract discrete segments based on the fact that horizontal
segments of Metroid are 15 tiles high and vertical segments
are 16 tiles wide. After filtering out segments that consisted
entirely of block characters, we obtained 414 segments. Labels
for each segment were assigned manually based on visual

inspection and indicated in which directions that segment was
open i.e. in which directions could a player enter or exit that
segment. Doors in Metroid were considered an open direction.

3) Mega Man: Horizontal and vertical sections of MM have
similar dimensions as in Metroid so here too, we extracted
15x16 segments, obtaining 143 for training. Labels were
assigned similarly to how they were for Metroid segments.

4) Lode Runner: All LR levels have a fixed dimension
of 22x32 tiles. Thus, a standard VAE is perfectly suited to
generate whole levels but we still wanted to test our CVAE
approach of building levels using labeled segments with LR
and thus divided each of the 150 LR levels in the VGLC into 4
segments of 11x16 tiles, obtaining a total of 600 segments for
training. Labels for each segment were assigned to indicate in
which direction that segment was connected to another e.g. the
top-left segment was assigned 〈0,1,0,1〉 i.e. Down and Right,
since it had a segment to the right and a segment below it.

Unlike prior work using VAEs, rather than extract segments
with redundancy from platformer levels by sliding a window
one column/row at a time, we used non-overlapping segments
to be more compatible with the discrete Zelda rooms as well
as for directional labels to be more meaningful and avoid
situations such as e.g., Metroid segments with doors in the
middle. Example segments and labels are shown in Figure 2.

B. Game and Genre Blending
In addition to working with the games separately, we wanted

to test the CVAE in generating levels blended across different
games. Since the labels indicate directions in which progress
is possible, irrespective of whether they are doors in dungeon
rooms or pathways/openings in platformers, a model trained on
similarly labeled sections from multiple games taken together
might be able to produce blended levels composed of such
interconnected sections. For example, a model trained on Zelda
and Metroid should be able to produce blended levels com-
posed of Zelda rooms connected with Metroid segments and
blended segments consisting of Zelda and Metroid elements,
thus giving us an approach for potentially blending levels
across not just games but different genres. For these CVAE
models, we extended the labels to also specify the games
being blended i.e. for a model trained on segments/rooms
from n games, we concatenated an n-element binary vector
to the 4-element binary vector indicating the directionality as
before e.g. when blending two games, labels for segments from
game 1 were concatenated with 〈1,0〉 while those from game
2 were concatenated with 〈0,1〉. We trained blended models
of Metroid–Mega Man, Zelda–Lode Runner, Zelda–Metroid,
Zelda–Mega Man and Zelda–Mega Man–Metroid.

Training a blended model on Metroid and MM was straight-
forward since both consist of 15x16 segments. Similarly,
11x16 Zelda rooms were compatible with 11x16 LR segments.
For blending Zelda with Metroid and MM, we padded the
Zelda rooms by duplicating each room’s two outermost floor
rows both to the north and to the south, thus yielding 15x16
rooms. Being discrete and independent, Zelda rooms were
well-suited to being padded. Padding LR segments was less



resistant to impacting directionality. Thus for that and to keep
to a manageable number of models, we blended LR with only
Zelda. For the 3-game blend, game labels were 〈0,0,1〉, 〈0,1,0〉
and 〈1,0,0〉 referring to MM, Metroid and Zelda respectively.

Besides using models trained on multiple games taken
together, blending can also be done by taking turns generating
level sections using multiple single-game models. This was ex-
plored in [29] using separate LSTM models of Mario and Kid
Icarus. Since our CVAEs use the same underlying definition
for labels (i.e. directionality), given a set of labels, we can use
different models to generate different level sections to obtain
a level made of segments from multiple games, as in Figure 1.
One could select which game model to use based on specified
probabilities which enables generating levels blending desired
proportions of games. Since this uses the single-game models,
we do not separately evaluate this approach.

C. Layout Algorithm
We use a simple approach to generate layouts within which

to place segments. We start by placing a single segment with
closed labels on all four sides. At each step, we select a random
side of a segment labeled as closed. If there is no segment next
to that side, a segment is placed there with all sides labeled
closed. We then connect the originally selected segment to the
(pre-existing or newly placed) segment next to the selected
side by setting the label to open on the adjoining sides. The
number of steps to run is chosen randomly from a small range.
We combine this with the CVAE by looping through each
layout segment, determining the appropriate label based on
the directions in which that segment is open/closed and then
use that to condition the generation of a sampled latent vector
to place in that location. For blending, any provided game
label could be concatenated to the determined direction label to
produce a segment. For the blend examples shown in the paper,
we randomly set the game label bits to 1 or 0 for each game.
This method could also accept probabilities for each game and
then generate levels that blend the games accordingly.

D. Modeling and Conditional Training/Generation
We trained a CVAE model for each of the above games and

blends. The encoder and decoder for all models consisted of
4 fully connected layers each, using ReLU activation. Models
were trained for 10000 epochs using the Adam optimizer and
a learning rate of 0.001, decayed by 0.01 every 2500 epochs.
These hyperparameters were set based on the prior VAE-based
PCGML work. All models were trained using PyTorch [30].
To study different latent sizes, we trained 4 versions of each
model using latent dimensions of 4, 8, 16 and 32.

Training a CVAE involves associating a label with each in-
put, concatenating them together and forwarding them through
the encoder to obtain a latent vector which is then concatenated
with the same label and forwarded through the decoder.
Through training, the encoder and decoder thus learn to use
the label to encode inputs and generate outputs respectively.
After training, generation is done by sampling a vector from
the latent space, concatenating it with the desired label and

forwarding it through the decoder to obtain the output. More
technical details regarding CVAEs can be found in [8], [31].

IV. EVALUATIONS AND DISCUSSION

A. Directional Labeling Accuracy
For evaluations, we were primarily interested in testing the

accuracy of labeling, i.e. if the segments generated by the
CVAEs were true to the directionality/orientation as indicated
by the labels used to generate them. For Zelda, this is straight-
forward to verify since we just check the location of door
tiles in the generated segments, similar to how the training
segments were labeled. For each of the 3 other games, we
trained a random forest classifier on their training segments
using 10-fold cross validation and the directionality labels as
the class labels with Metroid, MM and LR having 12, 9 and 4
unique classes/directionalities respectively. All classifiers were
implemented using scikit-learn [32]. We obtained mean clas-
sification accuracies of 98%, 81% and 51% respectively. The
low accuracy for LR is likely due to training on level quadrants
and that structure and progression doesn’t particularly vary
across them since original levels do not vary gameplay based
on quadrants. We note however that this implies that different
11x16 LR segments are interchangeable in terms of being able
to be combined with respect to directionality and progression.
To evaluate conditioning accuracy, for a generated segment, we
compared the label predicted by the classifier with the one used
to condition the segment’s generation. While ideally we want
exact matches between predicted and conditioning labels, i.e.
the generated segment to be open and closed in the exact label-
specified directions, it is sufficient that the generated segment
has just the desired open directions, regardless of whether the
desired closed directions end up being open in the generated
segment. We want to avoid the reverse case i.e. desired open
directions being closed in the generated segment. Thus, in
addition to exact label matches, we were interested in matches
where the bits set to 1 in the conditioning label were also set
to 1 in the predicted label, regardless of the value of the other
bits. We refer to these as admissible matches. Note that by
definition, an exact match is also admissible. An additional
point of note is that not all possible directional labels are
present in each game. Since the directional labels are binary
vectors of length 4, there are 24 = 16 possible labels. However,
as mentioned above, only 12, 9 and 4 of these are present in
the training data of Metroid, MM and LR respectively, with
only Zelda having all 16. It is thus reasonable to expect that the
models will do a better job of generating matching segments
when using labels that appear in the training data compared
to those that do not. Thus, except for Zelda, we track matches
separately for IN-game and OUT-of-game labels.

For each model, we sampled 1000 latent vectors at random
and used each of the 16 possible labels for conditioning, thus
generating 16000 segments. For each segment, we applied
the relevant classifier and compared the predicted label with
the label used for conditioning, separately computing the
percentage of exact and admissible matches for IN and OUT
labels. That is, we computed what percentage of IN labels



Zelda Metroid Mega Man Lode Runner
Latent Exact Admissible Exact-IN Admissible-IN Admissible-OUT Exact-IN Admissible-IN Admissible-OUT Exact-IN Admissible-IN Admissible-OUT

4 99.81 99.84 69.52 90.96 71.15 61.9 88.81 27.9 95.48 95.48 39.36
8 99.96 99.96 69.28 91.29 73.33 61.62 89.4 27.87 94.78 94.78 39.97
16 99.85 99.91 67.63 90.38 72.13 58.9 86.57 28.14 94.78 94.78 39.9
32 99.95 99.96 62.34 89.33 64.6 53.78 83.21 28.99 94.78 94.78 40.18

TABLE I: Directional label accuracy.

(a) Zelda–Lode Runner (b) Zelda–Metroid (c) Zelda–Mega Man (d) Metroid–Mega Man (e) Zelda–Met–MM

Fig. 3: E-Distances for different game blends.

〈Zelda,LR〉 4 8 16 32
Z LR Z LR Z LR Z LR

〈0,0〉 48.5 51.5 51.6 48.4 52.2 47.8 62.1 37.9
〈0,1〉 0 100 0.2 99.8 0 100 1 99
〈1,0〉 100 0 100 0 100 0 100 0
〈1,1〉 74.9 25.1 95.1 4.9 88.7 11.3 67.3 32.7

〈Metroid,MM〉 4 8 16 32
Met MM Met MM Met MM Met MM

〈0,0〉 53.9 46.1 50.7 49.3 54.1 45.9 48.2 51.8
〈0,1〉 1.4 98.6 3.1 96.9 5.1 94.9 4.1 95.9
〈1,0〉 96.7 3.3 94.3 5.7 92 8 92.7 7.3
〈1,1〉 37.3 62.7 46.2 53.8 44 56 49.8 50.2

〈Metroid,Zelda〉 4 8 16 32
Met Z Met Z Met Z Met Z

〈0,0〉 66.9 33.1 35.9 64.1 53.9 46.1 47.6 52.4
〈0,1〉 0 100 0 100 0 100 0 100
〈1,0〉 99.4 0.6 99.7 0.3 100 0 99.8 0.2
〈1,1〉 38.1 61.9 31.8 68.2 16 84 25.9 74.1

〈MM,Zelda〉 4 8 16 32
MM Z MM Z MM Z MM Z

〈0,0〉 64.8 35.2 38.3 61.7 54.9 45.1 61.3 38.7
〈0,1〉 0 100 0 100 0 100 0 100
〈1,0〉 98.8 1.2 99.9 0.1 100 0 99.3 0.7
〈1,1〉 10.8 89.2 24.7 75.3 41.6 58.4 71.1 28.9

TABLE II: Blend accuracy for all two-game blends.

〈Zelda,
Met,MM〉

4 8 16 32
Zel Met MM Zel Met MM Zel Met MM Zel Met MM

〈0,0,0〉 54.1 23.3 22.6 38.2 33.1 28.7 34.8 36.3 28.9 54.2 25.3 20.5
〈0,0,1〉 0.3 8.5 91.2 2.4 5.8 91.8 1 9.9 89.1 0.1 13.3 86.6
〈0,1,0〉 0.1 94.1 5.8 0 91.3 8.7 0.2 94 5.8 0 89.1 10.9
〈0,1,1〉 0.1 41.1 58.8 0.1 38.8 61.1 0 47.2 52.8 0 46.9 53.1
〈1,0,0〉 100 0 0 100 0 0 100 0 0 100 0 0
〈1,0,1〉 91.2 0.5 8.3 89.8 0.3 9.9 98.2 0.3 1.5 51.3 6.1 42.6
〈1,1,0〉 75 21.6 3.4 90.9 8.7 0.4 96.8 3 0.2 61.8 31.3 6.9
〈1,1,1〉 23.6 32.9 43.5 44.4 21.1 34.5 48.2 24.7 27.1 6.5 33.3 60.2

TABLE III: Blend Accuracy for Zelda–Metroid–Mega Man.

yielded exact and admissible matches and what percentage of
OUT labels yielded such matches. Results are shown in Table
I. All Zelda models achieved near 100% accuracy, suggesting
that door placement using conditioning is very reliable for
Zelda rooms. The exact match percentages for OUT labels
were 0% in all non-Zelda games so we omitted them. The

Zelda Original 4 8 16 32
Density 0.59± 0.08 0.58± 0.06 0.58± 0.06 0.59± 0.06 0.59± 0.07

Symmetry 0.76± 0.06 0.76± 0.04 0.76± 0.04 0.76± 0.05 0.75± 0.05

Metroid Original 4 8 16 32
Density 0.39± 0.16 0.41± 0.09 0.4± 0.08 0.41± 0.08 0.4± 0.08

Symmetry 0.67± 0.12 0.59± 0.04 0.6± 0.05 0.6± 0.05 0.61± 0.05

Mega Man Original 4 8 16 32
Density 0.38± 0.18 0.4± 0.13 0.41± 0.13 0.39± 0.14 0.39± 0.13

Symmetry 0.65± 0.13 0.62± 0.08 0.63± 0.07 0.64± 0.09 0.63± 0.07

Lode Original 4 8 16 32
Density 0.41± 0.17 0.39± 0.14 0.39± 0.15 0.38± 0.15 0.39± 0.15

Symmetry 0.52± 0.14 0.51± 0.1 0.53± 0.1 0.53± 0.11 0.53± 0.11

TABLE IV: Means ± std. devs. for Density and Symmetry of
generated segments. Values in bold were significantly different
from the original segments.

Latent Zelda Metroid Mega Man Lode Runner
Ovr IN OUT Ovr IN OUT Ovr IN OUT Ovr

4 43.1 59.9 88.8 67.2 69.8 95.9 81.5 78.4 99.5 94.2
8 45.2 58.1 87.3 66.6 72.7 95.4 83.3 82.6 99.2 94.7
16 45.8 58.4 86.6 65.5 69.9 93.6 80 84.2 98.8 95.8
32 48.3 58.6 77.1 63.6 71.9 89.1 79.3 84.1 98.9 95.5

TABLE V: Novelty of generated segments. Ovr is the overall
percentage, combining both IN and OUT label percentages.

next highest percentages are for LR though only 4 out of
16 labels are IN labels so for the remaining 12, LR models
produced admissible matches only about 40% of the time.
Metroid outperformed MM in all 3 types of matches. Overall,
in all cases, we observed about 90% admissible matches when
using IN labels suggesting that the models can very reliably
produce openings/doors in desired directions as prescribed by
the label, even if exact matches are not as frequent.

B. Blend Labeling Accuracy
Similarly, we wanted to evaluate the blend labeling accu-

racy. For each blended model, we trained a random forest
classifier with 10-fold cross validation, using the game that a
training segment belongs to as the class label. The classifier
for the Zelda–Metroid–Mega Man blend worked with 3 class
labels while the others all worked with two. For all blends
involving Zelda, we obtained classification accuracies of 100%
and an accuracy of 98% for the Metroid-Mega Man blend.



For each model, we sampled 100 latents and used each pos-
sible game+directional label to condition their generation. For
2-game blends, there were 2(2+4)=64 such labels, resulting in
a total of 6400 generated segments and for the 3-game blend,
there were 2(3+4)=128 possible labels, resulting in 12800
generated segments. In both cases, we applied the relevant
blend classifier on each generated segment and compared the
predicted label with the game label used for generation. In
all cases, for each possible game label, we computed the
percentage of times each of the games in that blend was
predicted. We expect that when using single game labels (e.g.
〈0,1〉, 〈1,0〉) to generate segments, predictions will be high for
that particular game. Also, when using blended game labels
(e.g. 〈1,1〉, 〈1,0,1〉), predictions should be more spread out
since here segments would blend the properties of the original
games. Results are given in Tables II and III and are true to
expectation. In all cases, when using single-game blend labels,
the classifier predicts the relevant game close to 100% of the
time for 2-game blends involving Zelda and at least 92.7% of
the time for the Metroid-MM blend. In the 3-game blend this
drops slightly to a minimum of 86.6% but is still mostly a very
high percentage in all cases. Also, blend labels in the 2-game
cases (〈0,0〉, 〈1,1〉) lead to more spread out predictions with
behavior varying across models, though in no clear pattern.
There is more of a spread when using 〈0,0〉 than 〈1,1〉 with
the latter in some cases causing one of the games to dominate.
For the 3-game case, we also note more spread out predictions
for the blend labels and note that when a game’s label element
is set to 0, that game is mostly predicted less than 1% of
the time, except in the 〈0,0,0〉 case. Overall, these results,
combined with those for the directional labels, suggest that
conditioning can successfully generate segments with desired
orientations as well as blend desired games together.

C. Tile-based Metrics and Novelty
We also evaluated the actual content of the generated seg-

ments. For this, we used the following two tile-based metrics:
• Density - proportion of a segment/room that is walls,

ground/breakable tiles, doors, platforms and blocks.
• Symmetry - measure of the combined vertical and hori-

zontal symmetry of a segment/room, computed by com-
paring pairs of rows and pairs of columns moving out-
ward from the center and summing up the number of
positions with the same tile.

Both measures were normalized to be between 0 and 1 with 1
representing a fully dense segment and a perfectly symmetrical
segment for Density and Symmetry respectively.

For each game, we computed these values for each training
segment. For evaluation, we sampled a number of latent
vectors equal to the number of training segments for that
game, and for each vector, computed the mean Density and
Symmetry, averaged across segments generated by condition-
ing that vector using that game’s IN directional labels. For
a meaningful comparison between generated and training
segments, we opted not to use the OUT labels. For each
game, we compared the densities and symmetries of the

Fig. 4: Example Zelda level.

Fig. 5: Example blended Zelda–Lode Runner level.

training segments with those of the generated segments using
a Wilcoxon Rank Sum test. Results are shown in Table IV.
We observed significant differences (shown in bold) between
training and generated segments (p < .05) for none of the
values for MM, for the 16-dimensional Zelda model in terms
of Density, for the 16-dimensional LR model in terms of
Density and the 32-dimensional LR model in terms of both
Density and Symmetry and in terms of all values for Metroid.
The absence of statistical significance suggests models being
able to successfully capture the structural patterns of the
original games, in terms of the measured variables. Thus, the
CVAEs for Zelda and MM did the best in terms of modeling
the original levels. For LR, the bigger models fared worse than
the smaller ones and overall, CVAEs for Metroid did worst in
terms of closely capturing the original levels. However, note
that the observed mean values for both Density and Symmetry
are close to those of the original values with the standard
deviation being far lower for the generated segments. This
suggests that Metroid models were able to capture the primary
structures and patterns of the original levels but failed in
learning an adequate amount of variety and outlier features.

Since most models did well in capturing the structural
patterns of the original levels, we wanted to check the perfor-
mance of the models in terms of generating novel segments.
For each game, we sampled 1000 latent vectors and generated



Fig. 6: Example Metroid level.

Fig. 7: Example blended Zelda–Metroid level.

segments by conditioning each using all possible directional
labels. We then computed what percentage of these segments
was not in the original training set, computing separately for
IN and OUT labels since we expect more of the IN label-
generated segments to be in the training set. Results for this are
given in Table V. The Zelda models produced the least novelty
with over half the samples being those from the training set.
LR models produced the highest variety, followed by MM,
followed by Metroid, producing approximately 80%, 70% and
60% novel segments respectively when using the IN labels.
Novelty was higher when using OUT labels but most of these
segments likely have incorrect orientations as seen previously.
Combining with the prior evaluation, the metrics for Zelda
models being closest to training data can be explained by these

Fig. 8: Example blended Zelda–Mega Man level.

Fig. 9: Example blended Metroid–Mega Man level.

models generating training segments about half of the time.
This can be viewed as good or bad depending on if one prefers
generated levels to closely resemble training levels or be more
varied. Metroid having the lowest novelty out of the other 3
games but being the farthest from the training data in the prior
evaluation reinforces the possibility that the models learned a
specific subset of the training data and thus produce those
segments when sampled but failed to learn more variations.
Thus, future work should look at improving these Metroid
models via more game-specific tuning and architectures.

Finally, to evaluate the segments generated by the blended
models, we compared the distribution of training segments of
the different games with the distribution obtained by using
different game conditioning labels. For this comparison, we
computed the E-distance between these two sets of segments.
E-distance [33] is a measure of similarity between two dis-
tributions with lower values indicating higher similarity and



Fig. 10: Example blended Zelda–Metroid–Mega Man level.

has been previously recommended for evaluating generative
models [34]. We used Density and Symmetry as defined
previously for computing E-distance. The idea behind this
evaluation is that we expect that, for example, for the Zelda–
LR blend, the E-distance between the original Zelda segments
and segments generated using the Zelda game label to be lower
than the E-distance from segments generated using the LR
game label and vice-versa. Results are shown in Figure 3.
Except for Metroid-MM, all results are to expectation. When
a game is specified in the label, the resulting distribution of
generated segments is closer to the training distribution than
when it is not. As an example, for Zelda–LR (fig 3.a), E-
distance compared to the original LR levels (red line) is lowest
when the label is 〈0,1〉 and highest when it is 〈1,0〉, with
similar results for Zelda and the other blends. Results weren’t
as expected for the Metroid–MM blends however. This may
be explained by the Density and Symmetry values being very
similar for the training segments in both games, leading to
similar E-distances. Overall, though, we can conclude based
on this and the blend label evaluation, that blending in general
can be controlled reliably by using these conditioning labels.

D. Visual Inspection

Example levels are shown in Figures 4-10. Segments are
delineated using white borders with red dashes indicating
doors/openings. Non-blended levels (Figures 4 and 6) look a
lot more playable while blended levels are less so but arguably
more interesting, consisting of smooth blended regions like
the Metroid-Zelda sections in Figures 7 and 10 as well as
more chaotic regions in Figure 5, blending ropes and ladders
with doors and dungeons. As-is, this system could be used for
generating blended levels for a companion system tasked with
generating mechanics that render the levels playable. For e.g.,
what set of mechanics could one come up with to traverse
Zelda dungeons while also being able to execute Metroid
jumps and climbing ladders to collect gold? What mechanics
make sense in regions that blend Zelda and Metroid? An-
swering such questions could help move us towards building
systems capable of generating entirely new game designs.

V. CONCLUSION AND FUTURE WORK

We presented an approach for generating whole platformer
levels and dungeons by using CVAEs to control the direction-
ality of generated segments and rooms, in turn also enabling us
to take a step towards blending games from different genres,
thus opening up several avenues to pursue in the future.

The main limitation of this work is the lack of playability
evaluations. This was confounded by several factors. For
Zelda, the VGLC dungeons contain neither lock and key
tiles nor the triforce, all of which are crucial for playability.
Thus, we restricted ourselves to noting that for Zelda, we
obtained near-perfect reliability of door placement, ensuring
that generated dungeons are at least traversable from room
to room. Regarding Lode Runner, a player completes a level
when they’ve collected all of the gold. However, since we
worked with segments, this is harder to check since a segment
may be playable but not have gold. Above all, blended levels
would warrant new mechanics to be playable and generating
mechanics for blended games is a problem we wish to address
in the future. The next step is thus to generate fully playable
versions of these dungeon-platformer hybrids and blends. We
could take levels generated by this work and use a separate
process to generate new/blended mechanics to be able to play
them. Alternatively, we could use an agent capable of certain
mechanics and try repairing a given set of generated levels,
using an approach similar to [35]. It would also be fruitful
to incorporate this work into a mixed-initiative or automated
design tool where users can supply the labels as well as
the proportions for blending. Finally, using different latent
sizes did not have much impact both in terms of quantitative
results and visual inspection. In the future, we’d like to focus
specifically on investigating the effect of different latent sizes.
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