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Latent Combinational Game Design
Anurag Sarkar, Seth Cooper

Abstract—We present latent combinational game design—an
approach for generating playable games that blend a given
set of games in a desired combination using deep generative
latent variable models. We use Gaussian Mixture Variational
Autoencoders (GMVAEs) which model the VAE latent space via
a mixture of Gaussian components. Through supervised training,
each component encodes levels from one game and lets us define
blended games as linear combinations of these components. This
enables generating new games that blend the input games as well
as controlling the relative proportions of each game in the blend.
We also extend prior blending work using conditional VAEs
and compare against the GMVAE and additionally introduce a
hybrid conditional GMVAE (CGMVAE) architecture which lets
us generate whole blended levels and layouts. Results show that
these approaches can generate playable games that blend the
input games in specified combinations. We use both platformers
and dungeon-based games to demonstrate our results.

Index Terms—procedural content generation, combinational
creativity, game blending, variational autoencoder

I. INTRODUCTION

Methods for Procedural Content Generation via Machine
Learning (PCGML) [1] primarily focus on learning distribu-
tions of individual games, but an emerging body of work [2]
has focused on methods for recombining learned models and
distributions across multiple games to generate content for
entirely new games. These have been motivated by limited
training data, wanting to leverage design knowledge in one set
of games to apply in another and exploring creative PCGML
applications beyond level generation. One such application is
game blending—the generation of new games by blending
the levels and/or mechanics of existing games, inspired by
designers building new games by combining ideas from ex-
isting ones [3]. An extensively used approach for blending
levels has been the variational autoencoder (VAE) [4], an
encoder-decoder architecture that learns latent representations
of data. Prior works [5], [6] have demonstrated VAEs to be
capable of such blending but offer limited means to control
the blending, learning a combined latent space spanning all
games without affording the ability to sample specific blends
or games. Given a design space spanning a set of games, one
may wish to blend only a certain subset of the games and
in desired proportions relative to one another. To this end,
prior works [7], [8] have shown via conditional VAEs that
supervision via labels is promising for obtaining such desired
blend combinations. However, these works only examined
binary combinations (a game is either included or not) rather
than relative blend ratios. Further, the playability of such
blended levels has been previously evaluated only by using
mechanics for the original games as proxies, rather than by
blending the mechanics themselves.
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In this work, we introduce a framework for generating
playable blended games that blend desired proportions of
games. We call this latent combinational game design—latent
since we use latent representations, combinational since game
blending is a combinational creativity [9] process and game
design since we generate novel, playable games. Overall, the
framework consists of:
• Training a latent variable model to learn a design space

that captures the set of k games to be blended
• Defining k weights specifying blend proportions
• Using the weights to generate blended levels by sampling

from the relevant parts of the learned design space
• Using the weights to derive a blended agent that combines

the mechanics of the original game agents
We apply this framework using supervised Gaussian Mixture
VAEs (GMVAE) [10], [11] and conditional VAEs (CVAE) [12]
which we train using levels from the platformers Super Mario
Bros., Kid Icarus, Mega Man and Metroid. Moreover, unlike
prior approaches, we test playability using blended agents
derived by combining the jump physics of these games using
the same weights used to blend the levels. Overall, we find that
the framework (with both models) enables generating playable
blended games based on the weights. Further, since these mod-
els generate segments, we introduce a novel hybrid conditional
GMVAE (CGMVAE) architecture which enables generating
whole blended levels as well as layouts that blend levels of the
dungeon games The Legend of Zelda, DungeonGrams and a
repurposed version of Metroid, thereby generalizing to beyond
platformers. This work thus contributes:
• a controllable combinational creativity framework for

blending games in terms of both levels and mechanics
• implementations of the framework using both GMVAEs

and CVAEs
• to our knowledge, the first use of blended jump agents
• a novel CGMVAE model combining GMVAEs and CVAEs

II. RELATED WORK

While PCGML [1] methods typically focus on modeling
individual games, a body of work has emerged which instead
recombines models from different games to generate new
forms of content and explore design spaces across multiple
games. Such works have recently been coined as methods for
PCG via Knowledge Transformation [2] and include game
generation by recombining learned game graphs [13] and
learning mappings between different platformers [14], to name
a few. A specific focus has been game blending i.e., generating
new games by blending the levels and/or mechanics of two
or more games, introduced in [3] where specifications of
Frogger and Zelda were blended manually. Several works have
since implemented blending using variational autoencoders
(VAEs) [4] which learn continuous latent representations that
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Fig. 1: Latent combinational game design: 1) a dataset of k games for training 2) a model which learns a latent space on which 3) blend
weights are applied to yield 4) a blended design space for sampling content satisfying 5) a constraints module such as a gameplay agent.

span all input games and can be sampled and searched for
blended content, having been used for blending platformers
[5], [6] as well as platformers with dungeons [8]. These works
however learn a fixed blend space without readily allowing the
specification of different blend combinations such as blending
a subset of the input games and in specific proportions. In
this work, we implement controllable blending using Gaussian
Mixture (GMVAE) and conditional VAEs (CVAE). GMVAEs
[10], [11] use a mixture of Gaussians as the prior distribution
for the latent space unlike regular VAEs which use a stan-
dard Gaussian. This enables GMVAEs to cluster data in an
unsupervised manner, where each GM component encodes a
specific cluster and can be used to generate data belonging to
it. Previously, GMVAEs have been used to discover clusters
of platformer levels [15]. We instead use supervised GMVAEs
since we want each GM component to cluster levels of one
of the input games and we know which game each level
belongs to. To our knowledge, this is the first use of a
supervised GMVAE in a games context, though prior works
have applied supervised [16] and semi-supervised GMVAEs
[17] outside of games. CVAEs [12], [18] add supervision to
regular VAEs through labeling. Prior works [7], [8] have used
CVAEs to control blending using multi-hot labels that specify
which games to include in the blend. We additionally apply
continuous labels to control the relative ratios of each game.

Game blending is a conceptual blending [19] method, falling
under combinational creativity [9], the branch of creativity
concerned with generating new concepts by recombining exist-
ing ones. A prior method for generating new games similar to
our approach is conceptual expansion [13]. Our works differ in
that their system does automated game recombination and uses
game graphs and video input whereas we generate specific
combinations of games and use VAE latent representations
and text-based input. In being a creative ML-based method
for game design, our work can also be viewed as a GDCML
(Game Design via Creative Machine Learning) approach [20].

Few previous works have attempted blending gameplay.
Prior work [21] has demonstrated the use of a constraint-
based method for blending the reachability rules of different
games but the only prior instance of blending jumps can be
found in [22] where blended jumps are extracted from paths
in generated blended levels. We blend jumps of the original
games directly using jump models from [23] which learned
hybrid automata to describe jumps of NES-era platformers.

III. FRAMEWORK

We discuss our overall methodology in two sections. In
this section, we introduce the framework and discuss its

implementation via GMVAEs and CVAEs and its use for
platformer level and jump blending. In the section after, we
will discuss the CGMVAE and CCVAE architectures and how
we use them to generate whole blended levels and extend to
dungeons. The framework (Figure 1) consists of:
1) Data comprised of levels from k different games
2) A model that learns a representation that enables working

with different combinations of the k games
3) A set of k weights to specify how each game should be

combined in the final blend
4) A blended design space obtained by blending the k games

using the weights
5) A constraints module that checks if outputs satisfy con-

straints such as playability.
A dataset of k games defines the full blending possibility

space and is used to train a latent variable model capable
of learning a disentangled1 representation of the games. We
use k-component GMVAEs and CVAEs with k-dimensional
labels which allow manipulating each game via a separate GM
component and label dimension respectively (note that this
could be any model that allows reasoning about the k subsets
of data separately, such as a conditional GAN [24]). To blend
the games, we use k weights defining the desired proportion
of each game. Applying these gives us the final blended space
with the k games blended in the specified proportions. For
the GMVAE, we linearly combine the k GM components to
obtain a new blended distribution. For the CVAE, we use the
k weights as the k-dimensional label when generating a level.
The final blended design space is then sampled to produce the
blended outputs. Lastly, a module checks if the sampled output
satisfies certain constraints. Here, the constraint is that outputs
must be playable by blended agents, however this is a general
module not restricted to playtesting e.g., it could be a module
that uses evolutionary algorithms to search the design space for
specific content. Borrowing linear algebra vocabulary, we can
consider the original k games as the basis games for blending
and each blended game is a linear combination of these basis
games, specified by the blend weights. The set of all such
linear combinations is the span of these basis games.

A. Level Data

Training data consisted of levels of Super Mario Bros.
(SMB), Kid Icarus (KI), Mega Man (MM) and Metroid (Met),
taken from the Video Game Level Corpus (VGLC) [25].
VGLC levels use a text format with unique characters mapping

1We use disentangled in the literal sense (i.e., the model learns separate
representations for each game) and not to refer to the specific technique of
making latent dimensions learn independent factors of variation.
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Fig. 2: GMVAE architecture. The label-assigning network (dotted
box) is part of the unsupervised GMVAE (as in prior work [15]) but
not required in the supervised GMVAE setting used in this work.

to specific tiles. To show blending, we used a distinct mapping
for each game, modifying the original tiles when games shared
the same tile characters (e.g., enemies in both SMB and Met
use ‘E’). We extracted 15x16 non-overlapping segments from
each level based on the dimensions of playable areas in MM
and Met where horizontal and vertical sections are 15 and 16
tiles high and wide respectively. KI levels are also 16 tiles
wide. The 14-tile high SMB levels were padded with a row
of background tiles on top. For Met, we filtered out entirely
solid segments. We extracted 172, 80, 143 and 435 segments
for SMB, KI, MM and Met respectively and upsampled
the non-Met segments to obtain a total of 1740 segments.
Each segment had a length-4 one-hot label indicating which
game it belonged to, with 〈1000〉, 〈0100〉, 〈0010〉 and 〈0001〉
indicating SMB, KI, MM and Met respectively.

B. Gaussian Mixture VAEs

VAEs [4] are deep latent variable models consisting of
encoder and decoder networks. For a z-dimensional latent
space, for each input training instance, the encoder outputs
z pairs of means and variances which parameterize the latent
distribution. A z-dimensional latent vector sampled from this
distribution is then forwarded through the decoder to obtain
outputs. Training is done by minimizing a loss function
composed of—1) the reconstruction error between encoder
inputs and decoder outputs and 2) the KL-divergence between
the latent distribution and a tractable prior (typically standard
Gaussian). Rather than use a standard Gaussian as the prior for
the latent distribution, GMVAEs [10], [11] use a mixture of
Gaussians. For a mixture of k Gaussians, this is done via: 1)
using a k-dimension one-hot label indicating the component
for an input, 2) training an additional network that maps a one-
hot label to pairs of means and variances that parameterize the
1 out of k components the input belongs to and 3) modifying
the 2nd loss term above to instead compute KL-divergence
between the latent and component distributions. GMVAEs are
typically unsupervised with a label-assigning network used to
learn the one-hot labels. This was used in [15] for discovering
clusters of platformer levels. For blending however, we want
each component to encode the segments of a specific game

and since we know which game each segment belongs to, we
use a supervised GMVAE, manually supplying one-hot labels
for each segment, making the label-assigning network unnec-
essary and simplifying training, as shown in Figure 2. Thus,
a k-component supervised GMVAE trained on levels from k
games results in each component encoding the levels for one
game. Each game is thus modeled by a separate Gaussian
distribution parametrized by a mean and a variance learned
through training. For generating a blended game, we accept
k weights and model the blended game as a new distribution
defined by the linear combination of the k GMs, as specified
by the weights. For k = 4 as in this work, after training we
obtain 4 GM components with means and variances given by:
M = [µ1, µ2, µ3, µ4] and V = [σ2

1 , σ
2
2 , σ

2
3 , σ

2
4 ]. We then accept

a weight vector W = [w1, w2, w3, w4] indicating the weight
of each GM desired in the new blended game. We then define
a new blended game distribution as the linear combination of
the 4 GMs with a mean given by the inner product ⟨M,W ⟩
and variance given by the inner product ⟨V,W 2⟩. This new
distribution is the blended design space from the framework
and is sampled to generate levels for the new blended game.

C. Conditional VAEs

Another approach for blending different combinations of
games explored in past works involves conditional VAEs
(CVAE) which are supervised VAEs that use labeled inputs.
The encoder and decoder learn to use labels to encode inputs
and produce outputs respectively. New outputs are generated
by sampling a latent vector, concatenating the desired label
and forwarding it through the decoder. Blending games using
CVAEs involves using one-hot labels for training but multi-
hot labels for generation e.g., 〈1011〉 indicates a blend of
SMB/MM/Met without KI. Prior works have used CVAEs to
blend games using multi-hot labels despite being trained only
using one-hot labels. However, these labels only allow a game
to be included or excluded from the blend. Since our goal
is to generate arbitrary blends of games, we test if CVAEs
trained using the same one-hot labels can work with arbitrary
labels i.e., if similar blend weights used to linearly combine
the learned components of the GMVAE, could be used by the
CVAE to produce blended games that combine the games in
accordance with the weights. After training the CVAE on the
same data and labels as the GMVAE, we generate blended
levels by: 1) sampling vectors from the CVAE latent space 2)
accepting k blend weights as before but using them as the k-
element label 3) concatenating it to each sampled vector and
4) forwarding the concatenated vectors through the decoder to
obtain the output blended levels.

D. Blending Jumps

Prior works [6], [26] have evaluated playability of blended
platformer levels using separate A* agents for each game. By
seeing which game’s agent can play through a blended level,
we can conclude if a blended level is e.g., more Mario-like
or Metroid-like. However, since our goal is generating new
blended games, we blend gameplay in addition to blending
levels. We define a blended jump model as a linear combi-
nation of the parameters of the original jump models, using
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the same weights used to blend levels. Thus, the jump for
a blended game is a linear combination of the jumps of the
original games. For jump models, we use the models from
prior work [23] that learned hybrid automata for describing
the jump physics of several NES platformers, including the
four we use. The automata consist of parameters defining the
jump arcs and vary depending on the game. We obtain blended
jump models by linearly combining these parameters using
the blend weights. The automata can be used to derive jump
arcs for the respective games. These jumps, when represented
as lists of (x,y) coordinates, can in turn be used to learn
the impulse and gravity parameters that define the jump, as
described in [22]. This has two specific benefits—1) jump arcs
derived via blending can be used with the Summerville tile-
based A* agent [27] to quickly test if they can be used to
traverse blended levels and 2) in the future, the impulse and
gravity parameters could be used to define the mechanics for
a player controller so that the blended levels can be played in
an interactive environment.

E. Experiments

All models were implemented using PyTorch [28]. The
GMVAE consists of an encoder, decoder and prior-assigning
network. The encoder and decoder consisted of 4 and 3
fully-connected layers respectively, with both using ReLU
activation. The last encoder layer was split into 2 parts, each
having 1 fully-connected layer with the latter additionally
using softplus activation. These two layers output the means
and variances of the latent distribution respectively. The prior
assigning network consisted of 2 independent sub-networks
each having 1 fully-connected layer with the second addi-
tionally using Softplus activation. The two networks output
the component means and variances respectively. Training
was done for 1000 epochs using the Adam optimizer with
an initial learning rate of 0.001, decayed by 0.1 every time
training plateaued for 50 epochs. For the CVAE, the encoder
and decoder consisted of 4 and 3 fully-connected layers re-
spectively, both using ReLU activation. Training lasted 10000
epochs using Adam with an initial learning rate of 0.001, set
to decay by 0.1 every 2500 epochs. The weight on the KL
term of the loss function was annealed from 0 to 1 for the
first 2500 epochs. Hyperparameters were determined based on
prior works using these models and through experimentation.
For evaluation, we conducted a 3-part study measuring 1)
how accurately the output of the blend models adhered to the
blend weights, 2) playability of the blended levels using the
blended agents and 3) comparing the tile patterns and content
in the generated blended levels with those in the original
levels. Additionally, for all evaluations, we used two types of
blend weights—1) binary weights in the form of length-4 one-
hot and multi-hot vectors indicating single-game and multi-
game blends respectively and 2) fractional weights consisting
of length-4 floating-point vectors, representing any arbitrary
combination of games. For binary weights, we evaluate all
possible length-4 binary vectors except 〈0000〉 since it is
unclear how to reason about a blend containing none of the
games, giving us 24 − 1 = 15 vectors. For fractional weights,
we define 4 vectors to test against to cover a range of blend

Binary Fractional
8-dim 16-dim 32-dim 64-dim 8-dim 16-dim 32-dim 64-dim

CVAE 1021.99 741.14 939.04 700.14 1113.8 995.08 1171.03 939.46
GM 659.83 707.9 293.79 310.94 904.21 937.26 851.84 947.31

TABLE I: Classification results for blended levels generated using
binary and fractional weights. Lower scores are better.

combinations: 〈0.5, 0.3, 0.2, 0.0〉, 〈0.1, 0.1, 0.1, 0.7〉, 〈0.1,
0.6, 0.2, 0.1〉 and 〈0.0, 0.2, 0.3, 0.5〉. For each of the CVAE
and GMVAE, we tested 4 different latent dimensionalities of
8, 16, 32 and 64 but found none to be clearly preferable across
all experiments, with different sizes producing best results for
different metrics. For clarity and space, instead of presenting
results for all 8 models, we present results from the GMVAE-
32 and CVAE-64 models as they performed the best on the
blend accuracy evaluation which is the most relevant for the
main focus of this work i.e., controllable blending of games.

1) Blend Accuracy: For evaluating how well the outputs
of the blended models adhere to the blend weights, we used
scikit-learn [29] to train a random forest classifier on the
segments using the game of that segment as the class label.
We achieved a 98.19% accuracy on an 80-20 train-test split.
The parameters for the classifier were determined via grid
search. This classifier approach for evaluating blending has
been used in prior CVAE works and acts as a proxy since we
lack ground-truth blended levels to compare generated output.
The expectation is that when using single game weights (e.g.,
〈0,0,0,1〉, 〈1,0,0,0〉), classifier predictions for a game will be
high when its bit is set to 1 and low when set to 0. Similarly,
when using blended weights (e.g., 〈1,1,0,0〉, 〈0,1,0,1〉), the
predictions should be more spread out across the games whose
bit is set to 1. When using fractional weights (e.g., 〈0.5, 0.2,
0.3, 0.0〉), the predictions should be spread out in accordance
with these weights. For classifying binary weights, for each
model, we sampled 1000 latent vectors for each possible 4-
digit binary weight, leaving out 〈0,0,0,0〉. We applied the clas-
sifier on each generated segment and tracked the percentage of
times each of the 4 games was predicted, per 4-digit weight.
To determine how well the outputs matched a given weight,
for each weight, we computed a score based on the following
formula: S =

∑4
i=1(wi ∗ f − pi)

2 where wi is the ith weight
element indicating the desired weight of the ith game, f is
a factor equal to 100 divided by the number of ones in the
weight and pi is the percentage of the 1000 segments for which
the classifier predicted the ith game. The lower the score,
the better the model matched outputs with the given weights
with 0 representing a perfect match, e.g., if the weights are
〈1,0,1,0〉, the factor f is 100/2=50 and a perfect score of 0 is
achieved when the classifier predicts games 1 and 3 50% of the
time each. For fractional weights, we generated 1000 latents
per weight per model and computed scores similarly, except
here f is set to a constant 100. Results are given in Table I. For
both binary and fractional weights, the GMVAE does better
than the CVAE for all latent dimensions except for 64 where
the CVAE does better. Looking at the latent sizes, for the
GMVAE and CVAE, 32 and 64 dimensions respectively give
the lowest score when combining binary and fractional weights
and thus for the remainder of our evaluations, we will only
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GM-32 dim CVAE-64 dim
Blend Weights SMB KI MM Met Score SMB KI MM Met Score

〈0001〉 0.7 0.1 0.4 98.8 2.1 0.1 0 0 99.9 0.02
〈0010〉 5.2 1.8 93.0 0 79.3 1.5 0.9 97.6 0 8.8
〈0011〉 4.4 1.3 40.5 53.8 125.7 6.2 0 58.4 35.4 322.2
〈0100〉 2.3 96.5 1 0.2 18.6 0.4 99.6 0 0 0.3
〈0101〉 11.7 21.1 2.1 65.1 1204.5 17.7 5.5 0.6 76.2 2980.3
〈0110〉 11.8 38 50 0.2 283.3 23.8 45.7 30.5 0 965.2
〈0111〉 15.6 20.4 34.1 29.9 422 35.5 7.5 30.9 26.1 1983.5
〈1000〉 94.6 3.8 1.6 0 46.2 98.6 1.4 0 0 3.9
〈1001〉 34.8 2.1 2.3 60.8 357.4 39.9 1.4 0 58.7 179.7
〈1010〉 48.1 5.3 46.6 0 43.3 42.7 9.3 48 0 143.8
〈1011〉 39 2.8 38.8 19.4 263.8 40.8 6.1 36.9 16.2 398.8
〈1100〉 56 42.8 1.2 0 89.3 64.5 35.5 0 0 420.5
〈1101〉 50.6 25.7 3 20.7 524.8 55.9 22.1 0.2 21.8 768.5
〈1110〉 47.8 26.4 25.7 0.1 315.6 30.2 62.6 7.2 0 1549.3
〈1111〉 42.5 19.4 29.6 8.5 631 40.5 37.1 13.4 9 777.2

〈0.5, 0.3, 0.2, 0〉 74.4 18.6 7 0 894.3 65.9 33.1 1 0 623.4
〈0.1, 0.1, 0.1, 0.7〉 2.3 0.7 1.8 95.2 848.1 2.4 0.2 0.5 96.9 967.7
〈0.1, 0.6, 0.2, 0.1〉 12.6 77.3 9.3 0.8 505.2 9.8 88.9 1.2 0.1 1286.7
〈0, 0.2, 0.3, 0.5〉 8.3 3.1 14.7 73.9 1159.8 12.3 2.5 18.3 66.9 880

TABLE II: Full classification results for both blend weight types.
Lower the score, more aligned are predictions with weights.

Fig. 3: Jump arcs for various combinations of games.

present and discuss results obtained using the 32-dimensional
GMVAE and 64-dimensional CVAE. Full classification results
are shown in Table II. We see that in most cases, the game
predicted most often is one whose bit is set to 1 in the binary
case. When using fractional weights, the amounts that levels
are classified as different games corresponds to the value of the
weights, though very loosely. Interestingly, the CVAE is able
to reason with fractional weights despite having only been
trained using one-hot binary weights as labels. Overall, this
suggests that both GMVAE and CVAE models are able to
generate output that corresponds to the desired blend weights.
These results give some intuition about why the GMVAE
outperforms the CVAE in Table I, namely that the GMVAE
is better able to blend the individual games in accordance
with the weights while the CVAE is more prone to pushing
the blend towards the game(s) with highest weight, as shown
(in Table II), by how for most multi-game blends, the CVAE
scores higher (worse) than the GMVAE, usually due to putting
too much weight on one of the games whose bit is set to 1. This
may be due to how these models perform blending. GMVAEs
learn separate distributions per game which are then combined
using the weights where as CVAEs learn one distribution
spanning all games and blends are produced by applying labels
(i.e., weights) to samples from this distribution. If this single
distribution approximates some games better than others, the
labels may be insufficient in producing accurate blends.

2) Playability: We evaluated playability of generated
blended levels using jump arcs obtained by blending the au-
tomata models using given blend weights and the Summerville
tile-based A* agent [30]. The original VGLC version worked

with solid and non-solid tiles and was updated in [22] to
work with 4 affordances [31]: solids, hazards, passables and
climbables. We further updated the agent to find start and goal
tiles in a segment. A segment is then playable if the agent can
find a path from start to goal. If no path or goal is found, it is
unplayable. The jumps used by the blend agent are derived
from blended automata models which in turn are obtained
by blending the hybrid automata models of the original 4
games using the blend weights. Details about these automata
and jump extraction can be found in [23]. Blended jump
arcs are shown in Figure 3. Since the blend agent simulates
an agent that can play blends of all 4 games, it knows the
tile-to-affordance mappings of all 4 games. For each model,
we sampled 1000 segments for each possible 4-digit binary
weight and computed the percentage that were playable by
the blended agent obtained by blending the original jump
models according to the corresponding weight. Since games
can progress both horizontally and vertically, for each segment,
the agent looks for both a valid horizontal and vertical path.
If either one is found, the segment is playable. To simplify
computations, we only look for left-to-right and bottom-to-top
paths. Thus, our evaluations underestimate playability since
e.g., MM and Met segments that progress downward but do
not have an upward moving path would be deemed unplayable.
Full playability results for the blended agent on binary and
fractional-weighted blends are shown in Tables III and IV.
Table IV also shows how well the original agents did in the
blended levels to depict that performance roughly corresponds
to the game’s weight in the blend e.g., for 〈0.5, 0.3, 0.2, 0〉,
the SMB agent completes more levels than the KI agent which
completes more than the MM agent which does better than the
Met agent. We show the performance of the original agents
to show that all models generate levels in accordance with
the weights and not to compare playability of the blend agent
with the original agents since such comparisons are not useful.
Essentially, there are two broad ways to compare. First, we can
assume that the original agent for a game should not reason
about the tiles of another e.g., an SMB agent should not know
to avoid MM spikes. But if only the blend agent knows all
tiles across all games, then it will trivially do the best since
in most blended levels, the original agents would face tiles
that are undefined for them and they would not be able to find
paths. Thus, playability reduces to tile knowledge. Second,
we can instead assume that all agents work at the affordance
level, agnostic of game-specific tiles. Here, playability is
completely determined by an agent’s jumpsize. Higher the
jump, higher the playability when all agents work with the
same tile information. Since the blend agent combines the
jumps of all games, its jump by definition can never be bigger
than that of Metroid. Thus, playability reduces to jumpsize.
Hence, in either case, such comparisons are uninformative.
Overall, we observe satisfactory playability of 61.97% and
65.58% for the GMVAE, averaged across binary and fractional
weights respectively and 70.14% and 68.03% for the CVAE.

3) Tile Metrics: To compare the content of generated
blended levels with those in the original levels, we used the
Tile Pattern KL-Divergence (TPKLDiv) [32] metric which
measures the similarity between two sets of levels in terms
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〈SMB, KI, MM, Met〉 GM-32 dim CVAE-64 dim
〈0,0,0,1〉 67.4 68.2
〈0,0,1,0〉 49 48.3
〈0,0,1,1〉 62.3 63.5
〈0,1,0,0〉 69.3 68.9
〈0,1,0,1〉 52.2 70.1
〈0,1,1,0〉 52.7 72.2
〈0,1,1,1〉 53.5 76.9
〈1,0,0,0〉 83.8 89.8
〈1,0,0,1〉 69.1 71.1
〈1,0,1,0〉 70.5 70.5
〈1,0,1,1〉 74.9 73.9
〈1,1,0,0〉 82.3 84.2
〈1,1,0,1〉 73.9 68.5
〈1,1,1,0〉 68.1 61.5
〈1,1,1,1〉 69.9 64.5

TABLE III: Percentage of playable levels for each binary blend.

GM-32 dim CVAE-64 dim
Blend SMB KI MM Met Blend SMB KI MM Met

〈0.5, 0.3, 0.2, 0〉 75.3 67.3 8.5 6.5 0.2 77.9 66.4 21.8 4.6 2.2
〈0.1, 0.1, 0.1, 0.7〉 62.1 0.2 0.6 0.7 66.4 61.8 0.5 0.3 1.2 64.8
〈0.1, 0.6, 0.2, 0.1〉 71.3 9.9 58 6.9 1.5 71.9 3.1 63.2 8.2 3
〈0, 0.2, 0.3, 0.5〉 53.6 0.7 3.7 9.7 51.3 60.5 0.6 2.5 14.7 58.9

TABLE IV: Percentage of playable levels for fractional blends
using the blended agent and original agents for each game.

G
M

〈1110〉 〈1101〉 〈1011〉 〈0111〉 〈1111〉

G
M

〈0.5,0.3,0.2,0.0〉 〈0.1,0.1,0.1,0.7〉 〈0.1,0.6,0.2,0.1〉 〈0,0.2,0.3,0.5〉 〈0.4,0,0,0.6〉

C
VA

E

〈1110〉 〈1101〉 〈1011〉 〈0111〉 〈1111〉

C
VA

E

〈0.5,0.3,0.2,0.0〉 〈0.1,0.1,0.1,0.7〉 〈0.1,0.6,0.2,0.1〉 〈0,0.2,0.3,0.5〉 〈0.4,0,0,0.6〉

Fig. 4: Example generated levels using the GM and CVAE
models for a number of different blend weights.

of the KL-divergence between their tile pattern distributions.
For each model and set of blend weights, we generate 1000
levels and compare the average TPKLDiv between them and
each set of original levels, separately for each of the 4 games,
with the values averaged over 2x2, 3x3 and 4x4 patterns. We
expect lower values when comparing the original levels of a
game with blended levels produced by weights that include
that game, and higher values when they do not, e.g., using
〈1,1,0,0〉 should lead to lower TPKLDiv values compared to
SMB and KI than with MM and Met. Full results are in Table
V and are true to this expectation, giving further support that
the models can produce blends in accordance with the weights.

F. Visual Inspection

Figure 4 shows example blended segments. Note that a
sampled segment may not appear blended since weights apply
to whole distributions and not individual segments. Thus it is
possible to sample segments that contain content from only 1

GM-32 dim CVAE-64 dim
Blend Weights SMB KI MM Met SMB KI MM Met

〈0001〉 12.68 13.02 12.83 1.59 13.51 12.97 13.16 1.37
〈0010〉 10.95 10.64 2.1 11.28 9.87 10.23 1.64 11.03
〈0011〉 11.28 10.69 7.59 5.59 8.7 8.78 6.37 5.2
〈0100〉 10.77 2.6 10.55 11.7 11.02 1.62 10.97 11.61
〈0101〉 10.84 8.57 11.07 4.46 9.04 8.16 9.16 2.96
〈0110〉 8.58 6.74 5.34 10.03 7.95 4.79 5.14 8.52
〈0111〉 9.01 7.61 5.78 6.35 6.74 6.65 5.15 4.26
〈1000〉 0.8 4.67 4.31 4.49 0.65 4.43 4.26 4.64
〈1001〉 6.76 7.73 7.49 2.36 5.03 5.84 5.78 1.9
〈1010〉 3.53 6.15 2.51 6.4 2.94 4.09 1.81 4.49
〈1011〉 5.31 6.29 4.25 4.42 3.95 4.56 3.18 3.22
〈1100〉 3.6 4.25 5.97 6.51 2.44 2.48 4.12 4.06
〈1101〉 4.78 4.06 6.1 4.32 2.58 3.03 3.13 1.49
〈1110〉 4 5.29 3.94 6.56 2.19 2.02 2.46 3.54
〈1111〉 4.37 5.66 4.08 5.36 3.26 3.85 2.76 2.3

〈0.5, 0.3, 0.2, 0〉 2.01 5 4.5 5.38 2.38 3.5 4.34 4.81
〈0.1, 0.1, 0.1, 0.7〉 11.77 12.04 11.66 1.63 11.4 11.05 11.15 1.46
〈0.1, 0.6, 0.2, 0.1〉 8.7 3.32 8.24 9.54 8.26 2.11 8.19 8.87
〈0, 0.2, 0.3, 0.5〉 11.19 10.5 10.01 3.79 9.48 9.28 8.26 3.64

TABLE V: TPKLDiv values between original games and the
different blend configurations. Lower the value, closer the tile-pattern
distribution of that blend is to the corresponding game.

game, highlighting the need to use more sophisticated methods
beyond just random sampling. That said, these examples depict
the games being blended. SMB can be identified by its pipes
and goombas, KI by its blue platforms, red hazards, brown
tiles and doors, MM via orange tiles, spikes and ladders and
Metroid via dark blue tiles, orange lava and metroid creatures.

IV. GENERATING AND BLENDING WHOLE LEVELS

In this section, we describe our approach for extending the
LCGD framework in 2 ways—1) generating whole levels and
2) blending levels from dungeon-based games. For this, we
combine the GMVAE and CVAE to introduce a novel Condi-
tional Gaussian Mixture VAE (CGMVAE) architecture which
uses a supervised GM prior for the VAE latent space thus still
enabling games to be encoded as GM components but now,
we also condition the encoder/decoder with labels indicating
segment orientation i.e., the direction(s) in which movement
is possible across the segment. Directional labeling was in-
troduced in prior work [8] for generating whole levels. Using
labels for progression enables generating segments that have
desired orientations and can be reliably connected together to
form whole levels. For dungeons, such labels can control the
direction(s) in which rooms have doors/openings and enable
generating dungeons with appropriately interconnected rooms.
This in turn lets us use the CGMVAE to apply the LCGD
framework on dungeon-based games. We compare this with a
CVAE where a label controlling direction is concatenated to
the label controlling blending. To distinguish it from the prior
CVAEs, we refer to it as CCVAE to indicate that the labels
here control both blend ratio and directionality.

A. Model and Architecture

The architectures and training for both CGMVAE and CC-
VAE were identical to the GMVAE and CVAE but augmented
by the length-4 multi-hot labels. For both models, these labels
were concatenated to both the encoder and decoder inputs. The
CGMVAE architecture is shown in Figure 5. The reasoning
for this labeling is that whole levels can be considered to
be composed of segments that are connected together so as
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Fig. 5: Conditional GMVAE (CGMVAE) architecture.

Mario - 〈0,0,0,1〉 Kid Icarus - 〈1,1,0,0〉 Mega Man - 〈0,0,1,1〉

Metroid - 〈1,1,0,1〉 Zelda - 〈1,1,1,0〉 DungeonGrams - 〈1,1,1,1〉

TABLE VI: Example segments with corresponding directional la-
bels indicating doors/openings in 〈Up, Down, Left, Right〉 directions.

to enable progressing through them. Platformer and dungeon
levels can be viewed as made up of discrete segments and
rooms respectively. For the CCVAE, we concatenated the new
directional label to the game label used with the CVAE models.

B. Level Data

The training data included levels from both platformers and
dungeon-based games. The platformer models were trained
using the same data as before, with directional labels added
to the game labels. Directional labels were length-4 multi-hot
vectors with elements corresponding to up, down, left and right
respectively and set to 1/0 to indicate if progression in the
corresponding direction was/was not possible e.g., 〈1,1,0,0〉
indicates a segment where progress can be made upward or
downward but not left or right. The label for each segment
was determined manually via visual inspection and indicated
the directions in which a segment could be entered or exited
by a player. For Metroid segments, directions having a door
were considered open. A challenge for training on dungeon-
based games is the lack of data in the VGLC where the
only such game with text-based level data is The Legend of
Zelda. Thus, to blend multiple such games, we also used levels
from DungeonGrams (DGG), a roguelike dungeon crawler
developed for prior research [33]. We also leveraged the
previously used Metroid levels. While Metroid is a platformer,
its sprawling, interconnected world can be seen as a dungeon
from a top-down perspective. We trained on 15x16 segments
from each game. Since Zelda and DGG levels are 11x16, we
padded each by duplicating the outermost rows. We also added
vertically and horizontally flipped versions of each Zelda

room, if not already present. We obtained 502 Zelda rooms,
522 DGG levels and 435 Metroid segments but upsampled
Zelda and Metroid to get a total of 1566 segments. Example
segments and directional labels are shown in Table VI.

C. Layout Algorithm

To arrange sampled segments/rooms into whole levels, we
use the layout algorithm from [8]. This starts with an initial
segment location closed in all four directions. In each iteration,
we randomly select a closed side of the current location and
place a new location next to that side if there is none. The
closed side just selected is then labeled open to connect the
new location to the prior one. This is repeated until a desired
number of interconnected locations are generated. Generating
a platformer layout is simpler since movement is overall left-
to-right, with/without vertical sections in between. For this,
we randomly set an upward or rightward direction for the
initial segment and set directions for subsequent segments such
that progress is possible from start to finish (e.g., segment
following a rightward/upward segment should be open on the
left/bottom respectively). There are many ways for arranging
segments into whole levels and in the context of the frame-
work, the layout algorithm could be viewed as part of the
constraints module. To produce the final level, we loop through
each location, determine the label based on the sides that are
open/closed, sample a latent vector, concatenate the label and
forward it through the decoder to generate the segment/room.
For the CGMVAE, the directional label is concatenated as in
Figure 5. For the CCVAE, both the game blend label and the
directional label are concatenated to the sampled latent.

D. Experiments

For evaluations, we tested that 1) the new directional labels
do not prevent the new models from blending in accordance
with the blend weights and 2) the generated outputs are
open/closed in accordance with the directional labels.

1) Blend Accuracy: We performed an identical classifier-
based evaluation as for the prior models. We re-used the
random forest classifier trained previously for the platformer
models and trained a new random forest classifier for the dun-
geon models. We achieved a 98.8% accuracy on a 80-20 train-
test split for the new classifier. Results for platformers and
dungeon games are given in Tables VII and VIII respectively.
Similar to the prior models, for both platformers and dungeon
games, the game classifications using the new models are in
accordance with the blend weights in a majority of cases.
That is, the game predicted most frequently by the classifier
is one whose bit is set to 1 in the binary case. The models
do less well for the fractional weights with most predictions
being for the game with the highest weight in only 5 out
of 8 and 4 out of 6 model-weight pairing for platformers
and dungeons respectively with CCVAE doing worse than
CGMVAE for dungeons for both types of weights. To compare
the two models, we performed the same evaluation as done
for the prior models (i.e., the one in Table I) using the same
approach described previously. Results are shown in Table IX
and confirm that in all but one case, the CGMVAE outperforms
the CCVAE, especially when using binary weights. Note that
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these results are consistent with the corresponding evaluation
for the initial GMVAE and CVAE models, thus suggesting
that the additional labels for controlling directionality do not
negatively impact the ability of these models to blend games
and that like the GMVAE outperforming the CVAE, here the
CGMVAE outperforms the CCVAE, with the CCVAE only
doing better for fractional weights in the platformer case. This
worse performance may stem from the difference in how they
enable blending compared to CGMVAE, as previously noted.

CGM-32 dim CCVAE-64 dim
Blend Weights SMB KI MM Met Score SMB KI MM Met Score

〈0001〉 4.7 4 0.6 90.7 124.9 0.4 0 0.1 99.5 0.4
〈0010〉 6.5 10.6 82.8 0.1 450.5 7 4 89 0 186
〈0011〉 12.5 7.1 45 35.4 444.8 8.1 0.2 18.4 73.3 1607.1
〈0100〉 1.9 97.3 0.6 0.2 11.3 0.1 98 1.9 0 7.6
〈0101〉 13.9 33.6 0.9 51.6 465.5 22.5 44.2 0.1 33.2 822.1
〈0110〉 13 40.3 46.5 0.2 275.4 25.4 32.8 41.8 0 1008.2
〈0111〉 15.2 26.7 28.1 30 312.5 29.8 52.3 15.6 2.3 2523.3
〈1000〉 53.1 46.1 0.8 1 4326.5 92.5 7.5 0.1 0 112.5
〈1001〉 35.9 8.6 0.6 54.9 297.1 8.6 1.1 0.7 90.3 3339.8
〈1010〉 31.7 13.3 54.8 0.2 534.9 62.1 22.5 15.4 0 1849.8
〈1011〉 33.8 6.9 35.5 23.8 143 50.2 12.3 16.7 20.8 868.7
〈1100〉 23.5 75.4 0.8 0.3 1348.1 58.1 41.9 0 0 131.2
〈1101〉 36.5 34.3 0.8 28.4 35.9 19.5 75.2 0.6 4.7 2764.4
〈1110〉 33.2 37.1 29 0.7 33.5 22 75.6 2.4 0 2871.8
〈1111〉 36.1 20.6 24.4 18.9 500.1 36 47 7.5 9.5 1151.5

〈0.5, 0.3, 0.2, 0〉 10.7 88.7 0.5 0.1 2106.6 28.8 71.1 0.1 0.2 1221
〈0.1, 0.1, 0.1, 0.7〉 15.1 14.4 0.5 70 540.7 1.6 0.2 0.1 98.2 803.8
〈0.1, 0.6, 0.2, 0.1〉 2.8 95.9 1.2 0.1 1516.3 0.6 99.4 5.3 0.2 974.5
〈0, 0.2, 0.3, 0.5〉 21.6 43.9 3.5 31 1355.9 11 4.2 0.4 84.4 1752.8

TABLE VII: Full classification results on platformers. Lower the
score, more aligned are predictions with weights.

CGM-32 dim CCVAE-64 dim
Blend Weights Zelda DGG Met Score Zelda DGG Met Score

〈001〉 0.2 0.3 99.7 0.2 0 0 100 0
〈010〉 0.1 99.8 0.1 0.1 0.1 99.8 0.1 0.1
〈011〉 0.3 57.8 41.9 126.5 0.7 9.9 89.4 3160.9
〈100〉 100 0 0 0 1.8 70.1 28.1 15346.9
〈101〉 74.3 1.8 23.9 1275 0.1 0.2 99.7 4960.1
〈110〉 42.1 57.6 0.3 120.3 0.2 99.4 0.4 4920.6
〈111〉 26 46.2 27.8 250 2.4 61.1 36.5 1737.9

〈0.5, 0.3, 0.2〉 39.5 59.3 1.2 1322.2 0.6 68.5 30.9 4041.4
〈0.2, 0.5, 0.3〉 0.4 95.3 4.3 1642.6 1 78.1 20.9 1233.4
〈0.3, 0.2, 0.5〉 3.7 31.4 64.9 1043.7 0.1 0.1 99.9 3770.1

TABLE VIII: Full classification results on dungeon games.Lower
the score, more aligned are predictions with weights.

2) Directional Accuracy: For this, we wanted to test if gen-
erated segments had directionality/orientation true to the labels
used to generate them. Similar to the blend label evaluation, we
trained a random forest classifier on the segments of the three
games to predict their directional labels, obtaining 97.13%
accuracy using an 80-20 train-test split. For our evaluation,
for each generated segment, we compared the label predicted
by this classifier with the directional label used to condition its
generation. Ideally, we would like the predicted label to exactly
match the label used for generation i.e., the generated segment
would be open/closed in the precise directions indicated by the
label. However, as noted in [8], it is sufficient for the generated
segment to match in only the required open directions to
ensure playability, irrespective of whether it is open/closed
in the desired closed directions. We only really want to avoid
the opposite case i.e., the generated segment being closed off
in a desired open direction. Borrowing terminology from [8],
we use the notion of exact and admissible matches where
the former refers to cases where the predicted label exactly

Platformers Dungeons
Binary Fractional Binary Fractional

CGM-32 620.27 1379.86 253.14 1820.86
CC-64 1282.97 1188.01 4303.77 3014.97

TABLE IX: Classification results for blended levels generated by
the CGM-32 and CC-64 models. Lower scores are better.

Genre Model Binary Fractional
Exact Adm Inadm Exact Adm Inadm

Platformers CGM-32 23.03 63.4 36.6 33.34 84.41 15.59
CC-64 27.05 71.01 28.99 36.24 82.28 17.72

Dungeons CGM-32 47.33 83.77 16.23 49.67 96.29 3.71
CC-64 33.43 79.31 20.69 36.77 83.54 16.45

TABLE X: Percentage of exact, admissible (adm) and inadmissible
(inadm) matches for models using both weight types.

CGM-32 dim CCVAE-64 dim
Blend Weights SMB KI MM Met SMB KI MM Met

〈0001〉 12.67 12.35 12.65 2.22 13.16 12.92 13.2 1.51
〈0010〉 10.67 10.49 2.39 11.55 11.1 10.99 1.99 11.92
〈0011〉 10.39 10.23 6.61 6.94 8.52 8.61 5.55 5.69
〈0100〉 9.11 3.06 9.37 10.03 10.82 2 10.86 11.67
〈0101〉 10.58 8.95 10.67 4.28 8.63 6.95 8.74 4.07
〈0110〉 9.27 7.55 4.29 10.17 9.54 7.64 4.41 10.35
〈0111〉 9.36 8.42 6.77 6.62 5.72 5.33 3.56 5.18
〈1000〉 2.88 4.1 5.06 5.68 0.94 5.26 5.12 5.7
〈1001〉 8 8.53 8.75 2.75 6.64 7.12 7.1 1.59
〈1010〉 6.12 6.68 2.29 7.42 5.17 6.06 1.97 6.53
〈1011〉 6.83 7.34 5.07 4.98 4.52 4.99 2.92 3.6
〈1100〉 5.04 3.21 6.43 7.05 3.3 2.52 4.88 5.36
〈1101〉 6.94 6.52 7.82 4.14 3.45 2.97 3.88 2.62
〈1110〉 5.8 5.46 3.54 7.22 4.5 3.65 3.02 5.5
〈1111〉 6.33 6.39 5.16 5.27 3.86 3.97 2.92 3.21

〈0.5, 0.3, 0.2, 0〉 4.76 3.77 5.4 6.68 3.7 3.89 4.42 5.86
〈0.1, 0.1, 0.1, 0.7〉 11.32 10.98 11.35 2.53 11.23 11.12 11.27 1.65
〈0.1, 0.6, 0.2, 0.1〉 7.46 3.74 7.42 8.38 7.92 3.08 7.05 8.75
〈0, 0.2, 0.3, 0.5〉 9.42 8.82 8.65 4.29 8.88 8.81 7.77 3.62

TABLE XI: TPKLDiv values between each original platformer and
the different blend configurations. Lower the value, closer the tile-
pattern distribution of that blend is to the corresponding game.

matches the conditioning label and the latter to situations
where the bits set to 1 in the conditioning label are also 1
in the predicted label, regardless of the value of the bits set to
0 in the conditioning label. Thus, by definition, an exact match
is also admissible. For our evaluation, we sampled 1000 latent
vectors for each blend weight and conditioned the generation
of each using all 15 directional labels. We computed the mean
percentage of exact, admissible and inadmissible matches for
each weight, averaged across the 15 labels. Results are shown
in Table X. While exact matches are not high for any model,
the percentage of admissible matches (which includes exact
matches) is about 80% in most cases, with the number being
lower for the binary platformer models, albeit still much higher
than the inadmissible matches. Thus, using the hybrid models,
we can both reliably obtain desired blended distributions and
also control the direction of segments sampled from them.

3) Tile Metrics: We did a TPKLDiv-based evaluation for
the new models with results shown in Tables XI and XII. In
essentially all cases, games with the highest/joint highest and
lowest/joint lowest weight have the smallest/highest TPKLDiv
to the corresponding original game respectively. This suggests
that, in terms of tile patterns, the blended distributions are
closer/farther to the original games in accordance with the
blend weights, thus indicating that incorporating directional
conditioning to the GMVAE and CVAE does not negatively
impact blending, as also suggested by the blending evaluation.
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CGM-32 dim CCVAE-64 dim
Blend Weights Zelda DGG Met Zelda DGG Met

〈001〉 23.37 23.4 1.77 23.64 23.68 1.38
〈010〉 21.92 3.73 21.78 21.85 3.96 21.71
〈011〉 20.45 13.94 12.52 21.03 19.95 8.3
〈100〉 1.28 22.8 22.62 10.87 18.73 18.69
〈101〉 8.35 20.79 17.61 23.16 23.27 2.76
〈110〉 10.45 15.5 20.07 16.42 12.07 19.84
〈111〉 14.48 15.72 15.68 16.45 17.82 15.83

〈0.5, 0.3, 0.2〉 7.17 19.1 20.3 16.91 16.71 15.39
〈0.2, 0.5, 0.3〉 20.29 7.87 19.04 18.89 14.47 15.53
〈0.3, 0.2, 0.5〉 19.83 20.1 7.9 22.47 22.54 3.83

TABLE XII: TPKLDiv values between each original dungeon game
and the different blend configurations. Lower the value, closer the
tile-pattern distribution of that blend is to the corresponding game.

Fig. 6: Sample platform level generated using CGMVAE-32

Fig. 7: Sample platform level generated using CCVAE-64

E. Visual Inspection

Sample whole levels are shown in Figures 6-9, generated
using the layout algorithm described previously with equal
weights for each game i.e., 1/4 each for platformers and 1/3
each for dungeons. While these are manually selected, they
are representative of the merits of the GMVAE over CVAE
in better respecting the blend weights as seen in Figures 6
and 8 which blend content from all platformers and dungeon
games while there is little Mario and DGG content (brown
tiles) in Figures 7 and 9 respectively. This reflects how the
game classifications for the CGMVAE are more spread out
in accordance with the weights compared to the CCVAE as
shown in Table IX. These visualizations show some amount
of noise in generated levels which is expected when blending
games. Future work could reduce noise by testing different ar-
chitectures/training. Our framework is not specific to VAEs so
we could try models such as CGANs [24] and GMGANs [34].
We could also conduct user studies to test how preferences and
qualitative evaluations match with quantitative evaluations e.g.,
a model with better metrics might produce levels that a user
finds less aesthetically pleasing and vice-versa.

V. DISCUSSION AND LIMITATIONS

In this section we discuss limitations of this work and some
future directions for more thoroughly investigating the nature
of blending. We note the classifier-based approach is a proxy
for the lack of ground-truth blended levels and recognize its

Fig. 8: Sample dungeon level generated using CGMVAE-32

Fig. 9: Sample dungeon level generated using CCVAE-64

issues, e.g., given a blend label 〈1001〉, a perfect classification
score of 0 can be achieved by a generator outputting a Mario-
only level or a Metroid-only level 50% of the time each.
While problematic in a vacuum, our models were trained
without any signal from a classifier and thus do not learn this
adversarial behavior. Combined with the other experiments,
the classifier evaluations lend support that the models respect
the blend weights. A limitation we do observe is that some
games can be poorly represented in the blends, particularly
Metroid for platformers and Zelda for dungeons. This may
be due to Metroid being the most structurally different from
other platformers and thus its latent encodings end up further
from those of the other games. When blending the learned
game distributions using equal weight, it is possible that the
final blend is furthest from the Metroid distribution, leading
to fewer Metroid-like segments being sampled. Similarly, for
dungeon blends, Zelda with its discrete, self-contained rooms
is different than both DGG and Metroid with their more open
structures. This could be fixed by scaling the blend weights
for these outlier games so that the final blend is closer to
the desired combination. Further, we want to more precisely
investigate the nature of blending, both in terms of how the
levels are blended across games as well as the interaction
of level and mechanic blending. Based on evaluations, visual
inspection and our intuition, in blending, the models seem
to generate game-specific tiles in game-agnostic semantically-
equivalent locations in terms of affordances, which is a reason-
able analog to how a designer might blend such games. Thus,
in addition to our TPKLDiv evaluations, we could evaluate
the underlying affordances and compute affordance-based KL-
Divergence as in [35]. We could also decouple the level and
mechanic blends i.e., test different jump blends on a given
level blend and vice-versa, which could enable mixing and
matching different level and mechanic blends to produce an
even greater variety of games. Relatedly, our approach could
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benefit from additional methods of controlling outputs sampled
from the blended distribution since currently one can only
sample at random. While some control is provided by the
CGMVAE and CCVAE in terms of orientation, additional
means of control could leverage prior work that combines
similar models with evolutionary algorithms to search for
specific content [36] or evolve an archive of playable levels
[37] based on specified behavioral features. A method for more
reliably sampling playable levels is also needed. For this, we
could incorporate into the constraints module an A* agent that
repairs unplayable levels as in [38].

VI. CONCLUSION AND FUTURE WORK

We introduced latent combinational game design, a frame-
work for controllably blending games, demonstrated it with a
supervised GMVAE and a CVAE and proposed a new CGM-
VAE architecture which combines the two models to generate
whole blended levels. Our future goal is to build a system
where the blended games can be played. We also wish to blend
mechanics beyond jumps by incorporating affordances and try
alternatives besides A* agents for the constraints module, such
as an ASP solver. We could also try learning mechanics for a
given blended domain by, for example, training an RL agent to
learn actions given a set of levels and tile affordances. Future
work could also use evolution to search the blended space
instead of sampling randomly. Finally, the framework could
be used as a combinational creativity approach for artistic
domains in general e.g., applied on a dataset of different styles
of paintings to produce a custom blend of art styles.
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