
Level Difficulty and Player Skill Prediction 
in Human Computation Games

Anurag Sarkar and Seth Cooper
Northeastern University

Introduction
• Human computation games (HCGs) often suffer from poor 

engagement, potentially due to difficulty balancing issues, as levels 
model real problems and thus can’t be arbitrarily modified in advance.

• Player rating systems (e.g. Glicko/Elo) can improve engagement in 
HCGs by matching players with levels of appropriate difficulty without 
actually modifying the levels [1].

• However, such systems start players and levels with default ratings. In 
HCGs, we may have information about players (from tutorials) and 
levels (from underlying properties) that could inform initial ratings that 
are more indicative of both player skill and level difficulty.

• Thus, we examined if player and level features could be used to 
predict player and level ratings that are closer to their actual, 
eventual ratings than the default ratings.

Background

For our study, we used Paradox [2], 
a 2D puzzle HCG designed for 
crowdsourced formal verification. 
Each level in the game represents 
an underlying MAX-SAT problem.

Methods

Results

Conclusion
• Regression on player and level features can help predict more accurate 

initial ratings for both players and levels than the default ratings, with 
better results for levels than players. 

• This may allow players and levels to reach their actual ratings more 
quickly by starting them out with predicted rather than default ratings.

• Future work could involve applying this technique to other games with 
graph-based levels and validating if using predicted ratings increases 
engagement by matching players with appropriate levels sooner.

References
[1] Sarkar, A.; Williams, M.; Deterding, S.; and Cooper, S. 2017. Engagement effects of player rating system-based matchmaking for 
level ordering in human computation games. In Proceedings of the 12th International Conference on the Foundations of Digital 
Games.

[2] Dean, D.; Gaurino, S.; Eusebi, L.; Keplinger, A.; Pavlik, T.; Watro, R.; Cammarata, A.; Murray, J.; McLaughlin, K.; Cheng, J.; and 
Maddern, T. 2015. Lessons learned in game development for crowdsourced software formal verification. In Proceedings of the 2015 
USENIX Summit on Gaming, Games and Gamification in Security Education.

[3] Glickman, M.E. 2001. Dynamic paired comparison models with stochastic variances. Journal of Applied Statistics 28(6):673-689.

[4] Pedregosa, F.; Varoqaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; 
Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-learn: machine learning in Python. 
Journal of Machine Learning Research 12:2825-2830.

Acknowledgments
This work was supported by a Northeastern University TIER 1 grant. This material is 
based upon work supported by the National Science Foundation under Grant No. 
1652537. We would like to thank the University of Washington’s Center for Game 
Science for initial Paradox development.

We ran the Glicko-2 rating system [3] 
on gameplay data involving players 
recruited through MTurk for generating 
ratings for players and levels. Ratings 
correspond to skill for players and 
difficulty for levels, and once generated, 
may be used to match players of certain 
skill with levels of comparable difficulty.

Player Features
• Total time to complete all tutorial levels

• # of moves to complete all tutorial levels

• Amount by which player exceeds total target score for all tutorial levels

Level Features
• # of variables per clause

• # of clauses per variable

• If all clauses satisfied when all variables set to 
True/False

• % of clauses satisfied when all variables set to 
True/False

We used the following methods, with leave-one-out cross validation, 
to evaluate different approaches to predicting ratings:
• Default: Always predict default rating of 1500 (baseline)
• Average: Predict average of all training ratings (baseline)
• LR: Use linear regression [4] on features to predict ratings
• GPR: Use Gaussian process regression [4] on features to predict 

ratings

• # of total/variable/clause nodes in level graph

• # of edges in level graph

• % of edges in MST

• Size of graph periphery

• Average shortest path length

Each player-level pairing was treated as a match with one of 3 outcomes:

Such matches between players and levels were used to generate their 
actual ratings. For ratings prediction, we used these training features:

Level Completed => Win for Player Level Forfeited => Win for Level Level Skipped => Ignored from analysis

Root mean square error in ratings prediction for players and levels

Percentage of regression predictions closer to actual ratings than average predictions

Scatter plot of actual vs regression predicted ratings for levels

Scatter plot of actual vs regression predicted ratings for players


