
Engagement Effects of Player Rating System-Based Matchmaking for Level Ordering in Human Computation Games

Anurag Sarkar, Michael Williams, Sebastian Deterding, Seth Cooper

Human Computation Games (HCGs)

Games that motivate large numbers of people to solve tasks that are hard to automate

Xylem

Nanocrafter

♦ PROBLEMS

Poor engagement

 \diamond Poor retention

♦ PROBLEMS

♦ Poor engagement♦ Poor retention

♦ ENGAGEMENT

♦ Degree and quality of a person's involvement in a task

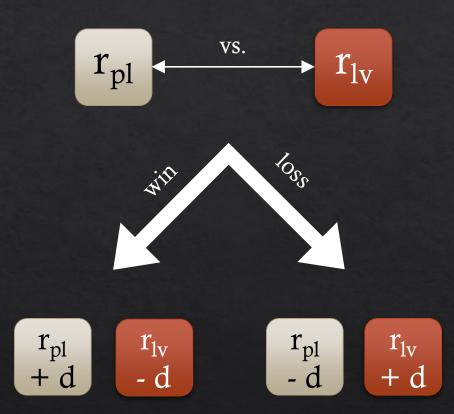
♦ Theory of Flow

♦ Flow State – when one is motivated and deeply engrossed in an activity

& Games engage players by having challenges be balanced relative to player skill

REASON - Lack of difficulty balancing in HCGs
No *a priori* knowledge of difficulty of tasks to be solved

REASON - Lack of difficulty balancing in HCGs
 No *a priori* knowledge of difficulty of tasks to be solved
 Not possible to modify tasks without compromising validity of solutions


REASON - Lack of difficulty balancing in HCGs
 No *a priori* knowledge of difficulty of tasks to be solved
 Not possible to modify tasks without compromising validity of solutions

Player Rating Systems

Examples: Elo, Glicko, TrueSkill

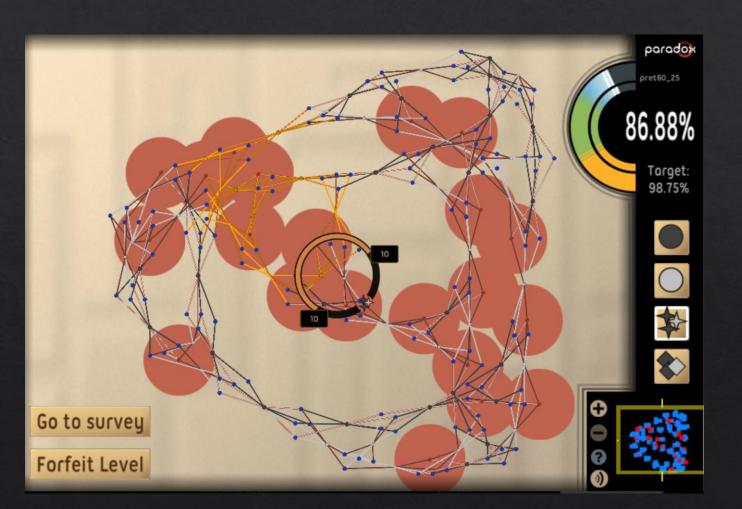
Player Rating Systems

Examples: Elo, Glicko, TrueSkill

Research Questions/Hypotheses

RQ1 – How does difficulty balancing affect engagement in HCGs?
RQ2 – How does rating-based matchmaking affect engagement in HCGs?

Research Questions/Hypotheses


♦ RQ1 – How does difficulty balancing affect engagement in HCGs?

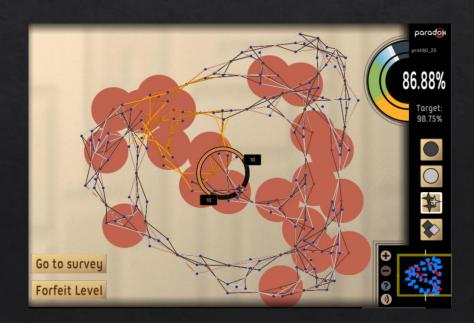
♦ H1 – Serving levels in strictly increasing order of difficulty leads to higher engagement than serving levels randomly

♦ H2 – Serving levels in order defined by matchmaking system leads to highest engagement

Paradox

- ♦ Each level represents a MAX-SAT problem
- Players assign values to variables, schedule optimizations
- Player completes level by reaching target score

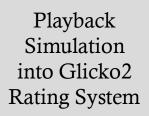
Participant Recruitment and Study


 Players recruited using Amazon Mechanical Turk

- ♦ Two phase study
 - Initial Level Rating Generation
 Matchmaking using generated level ratings

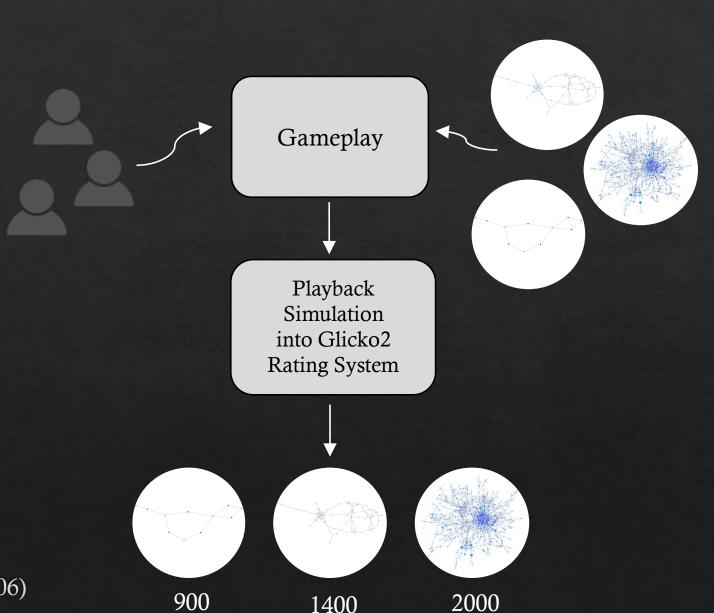
♦ Glicko-2 Rating System

♦ 9 tutorial levels, 33 challenge levels



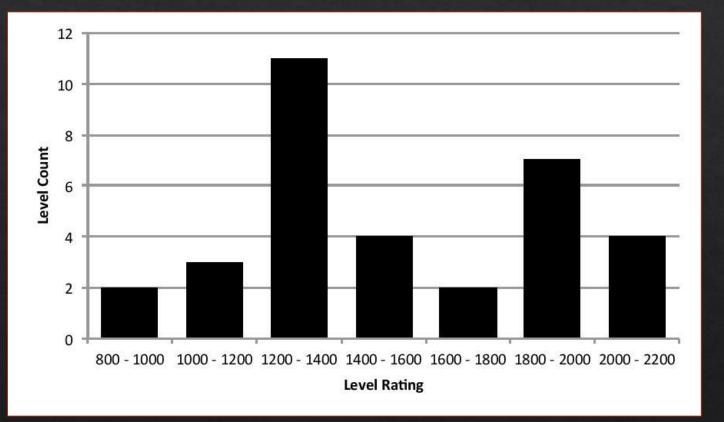
Gameplay

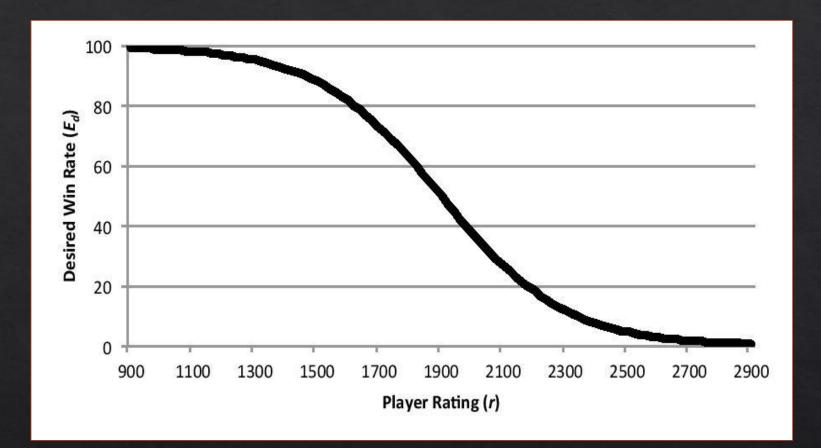
- ♦ 98 players
- Player-level pairings considered as matches
- ♦ Match outcomes:
 - ♦ Level Completed => Player wins
 - ♦ Level Forfeited => Level wins
 - ♦ Level Skipped => Ignore
- Default Glicko-2 Parameter Values
 (Rating 1500, Deviation 350, Volatility 0.06)


- ♦ 98 players
- Player-level pairings considered as matches
- ♦ Match outcomes:
 - \diamond Level Completed => Player wins
 - \diamond Level Forfeited => Level wins
 - ♦ Level Skipped => Ignore
- Default Glicko-2 Parameter Values
 (Rating 1500, Deviation 350, Volatility 0.06)

Gameplay

- Player-level pairings considered as matches
- ♦ Match outcomes:
 - ♦ Level Completed => Player wins
 - \diamond Level Forfeited => Level wins
 - ♦ Level Skipped => Ignore
- Default Glicko-2 Parameter Values
 (Rating 1500, Deviation 350, Volatility 0.06)




♦ 98 players

 Player-level pairings considered as matches

♦ Match outcomes:

Level Completed => Player wins
Level Forfeited => Level wins
Level Skipped => Ignore

♦ Low rating → High Desired Win Rate → Easy levels served
♦ High rating → Low Desired Win Rate → Hard levels served

* Desired Win Rate: $E_d(r) = 1 - 1/(1 + e^{-k(r-r0)})$ k = 0.005, r0 = 1900

* Desired Win Rate: $E_d(r) = 1 - 1/(1 + e^{-k(r-r0)})$ k = 0.005, r0 = 1900

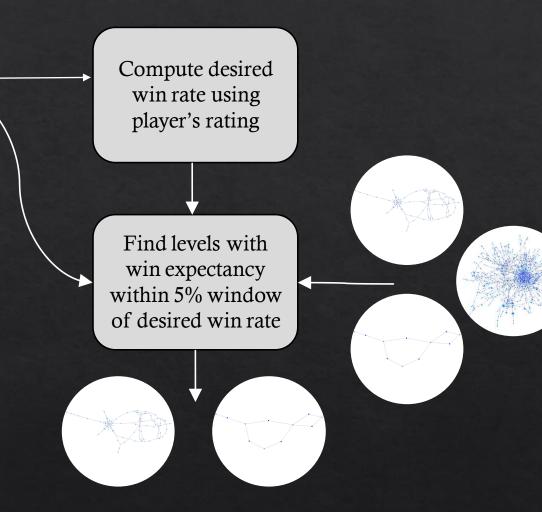
 ♦ Win Expectancy Formula: E_p(r, v) = 1/(1 + 10^{(v-r)/400}) r – player's current rating v – level rating

- ♦ 393 workers accepted HIT
- 294 completed HIT (75% completion rate)

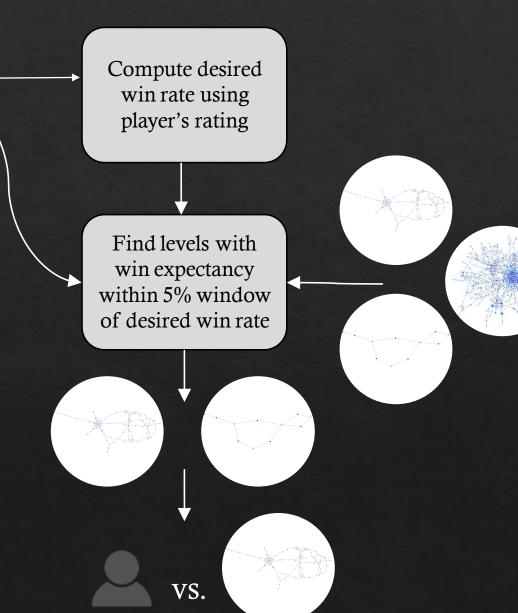
♦ Ordering:

♦ MATCHMAKING – 79
♦ INCREASING – 99
♦ RANDOM – 116

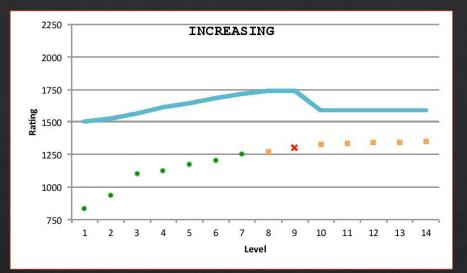
 Levels and players initialized with default Glicko2 parameters except levels were initialized with ratings from phase 1


- ♦ 393 workers accepted HIT
- 294 completed HIT (75% completion rate)

Compute desired win rate using player's rating

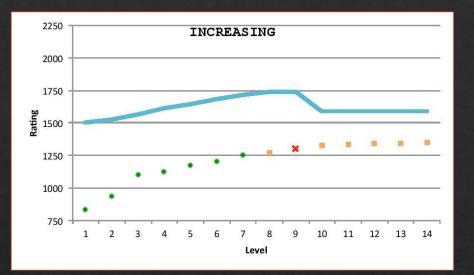

♦ Ordering:

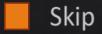
- ♦ MATCHMAKING 79
 ♦ INCREASING 99
 ♦ RANDOM 116
- Levels and players initialized with default Glicko2 parameters except levels were initialized with ratings from phase 1

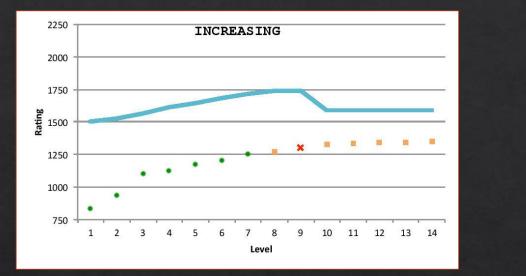

- ♦ 393 workers accepted HIT
- 294 completed HIT (75% completion rate)
- Ordering:
 MATCHMAKING 79
 INCREASING 99
 RANDOM 116
- Levels and players initialized with default Glicko2 parameters except levels were initialized with ratings from phase 1

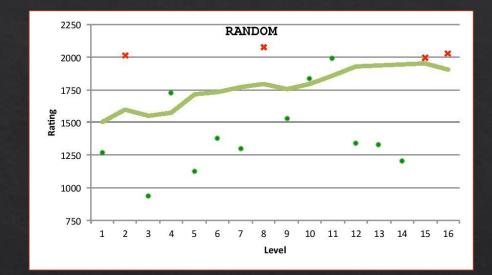
- ♦ 393 workers accepted HIT
- 294 completed HIT (75% completion rate)
- Ordering:
 MATCHMAKING 79
 INCREASING 99
 RANDOM 116
- Levels and players initialized with default Glicko2 parameters except levels were initialized with ratings from phase 1

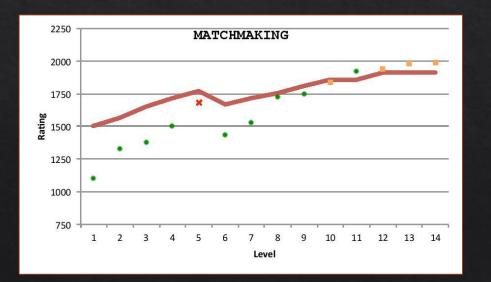
Example Player Trajectories




Example Player Trajectories

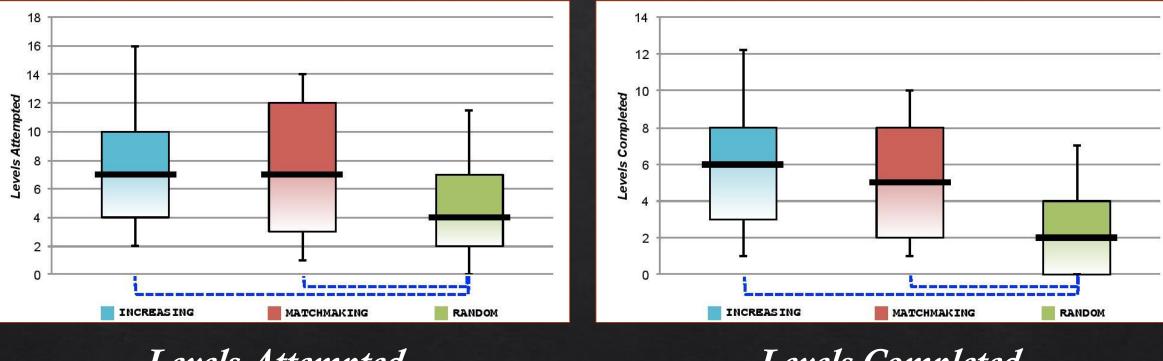






Example Player Trajectories

🔵 Complete (Win)

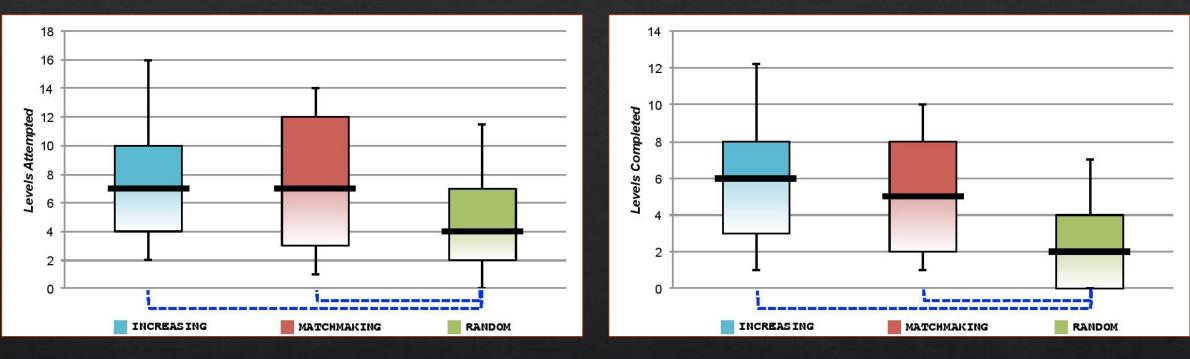

Measures of Engagement

- *Quantitative Engagement:* The *amount* of work done by players
 Challenge Time
 Levels Attempted
 - ♦ Levels Completed

Qualitative Engagement: The aggregate *difficulty* of work done by players
 Highest Rating (of any level completed by a player) Per-Level Rating (avg. difficulty/rating of completed levels)

Statistical Tests: Omnibus Kruskal-Wallis Test, post-hoc Wilcoxon Rank-Sum Test

Quantitative Engagement


Levels Attempted

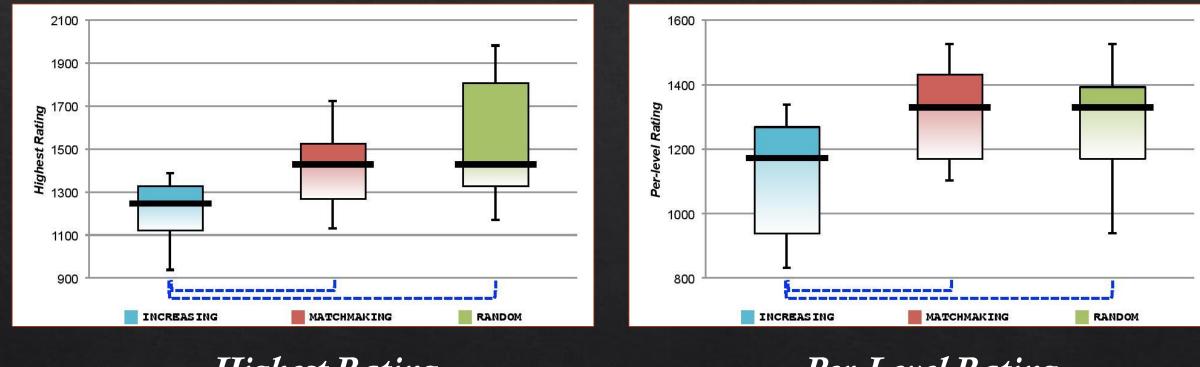
Levels Completed

Box Plots: 10th, 25th, 50th, 75th, 90th percentiles

– – – Significant differences

Quantitative Engagement

Levels Attempted


Levels Completed

No differences among conditions for Challenge Time

Box Plots: 10th, 25th, 50th, 75th, 90th percentiles

– – – Significant differences

Qualitative Engagement

Highest Rating

Per-Level Rating

Box Plots: 10th, 25th, 50th, 75th, 90th percentiles

– – – Significant differences

Discussion

H1 is partially supported
 Quantitatively, INCREASING does better
 Qualitatively, RANDOM does better

Discussion

♦ H1 is partially supported

 \Leftrightarrow Quantitatively, INCREASING does better

♦ Qualitatively, RANDOM does better

♦ H2 is rejected

MATCHMAKING and RANDOM engage players to do equivalently difficult work
 --- but MATCHMAKING engages them to do so for a greater number of levels

MATCHMAKING and RANDOM engage players to do equivalently difficult work
 --- but MATCHMAKING engages them to do so for a greater number of levels

MATCHMAKING and INCREASING engage players to do more than RANDOM
 --- but MATCHMAKING engages them to do more *difficult* work

MATCHMAKING is thus a 'best of both worlds' approach

Outperforms RANDOM in terms of *quantity* of work done
Outperforms INCREASING in terms of *quality* of work done

♦ Effects of exposing players to rating system

♦ Effects of exposing players to rating system

Online (one-phase) system

Set Effects of exposing players to rating system

♦ Online (one-phase) system

Other games with unknown difficulties

Set Effects of exposing players to rating system

♦ Online (one-phase) system

Other games with unknown difficulties

♦ Generating levels to fill in gaps

Acknowledgments

This work was supported by a **Northeastern University** TIER 1 grant and partly conducted in the **Digital Creativity Labs** (digitalcreativity.ac.uk), jointly funded by **EPSRC/AHRC/InnovateUK** under grant no. EP/M023265/1. This material is based upon work supported by the **National Science Foundation** under grant no. 1652537. We would like to thank the **University of Washington**'s **Center for Game Science** for initial *Paradox* development.

Contact

Anurag Sarkar Northeastern University sarkar.an@husky.neu.edu

Variable	Omnibus	MATCHMAKING / INCREASING	INCREASING / RANDOM	RANDOM / MATCHMAKING
Challenge Time (s)*	n.s., H(2) = 1.62	395 / 329	329 / 386	386 / 395
Levels Attempted*	p < .001, H(2) = 14.91	7 / 7	7 / 4	4 / 7
		n.s., U = 3869	p < .001, U = 4143	p = .003, U = 3441
			$r_{rb} = 0.28$	$r_{rb} = 0.25$
Levels Completed*	p < .001, H(2) = 45.80	5 / 6	6 / 2	2 / 5
		n.s., U = 3536	p < .001, U = 2911.5	p < .001, U = 2672
			$r_{rb} = 0.49$	$r_{rb} = 0.42$
Highest Rating**	p < .001, H(2) = 55.67	1431 / 1249	1249 / 1431	1431 / 1431
		p < .001, U = 1631	p < .001, U = 1436	n.s., U = 2581
		$r_{rb} = 0.52$	$r_{rb} = 0.60$	
Per-level Rating †	p < .001, H(2) = 224.41	1328 / 1171	1171 / 1328	1328 / 1328
		p < .001, U = 88440	p < .001, U = 84872	n.s., U = 102830
		$r_{rb} = 0.45$	$r_{rb} = 0.43$	

Table 1: Summary table of variable analysis. Variables analyzed using *all players, **players who completed at least one level, and [†]all completed levels. Shaded cells show significant post-hoc comparisons. Medians are given.