Blending Levels from Different Games using LSTMs

Anurag Sarkar and Seth Cooper

College of Computer and Information Science
Northeastern University

 Recent work on training models on existing levels to generate new levels

- Recent work on training models on existing levels to generate new levels
 - ♦ Sequence Prediction using LSTMs

Summerville and Mateas, 2016

- Recent work on training models on existing levels to generate new levels
 - ♦ Sequence Prediction using LSTMs
 - ♦ Conceptual blending

Summerville and Mateas, 2016

Guzdial and Riedl, 2016

- Recent work on training models on existing levels to generate new levels
 - Sequence Prediction using LSTMs
 - ♦ Conceptual blending

 Gow and Corneli proposed generating new games by blending entire games

- Recent work on training models on existing levels to generate new levels
 - ♦ Sequence Prediction using LSTMs
 - Conceptual blending

 Gow and Corneli proposed generating new games by blending entire games

```
forest > SpawnPoint stype=log
   dense > prob=0.4 cooldown=10
     sparse > prob=0.1 cooldown=5
 log > Missile orientation=LEFT speed=0.1
 safety > Resource limit=2
 frog > MovingAvatar
 truck > Missile img=truck
     rightTruck > orientation=RIGHT
         fastRtruck > speed=0.2
         slowRtruck > speed=0.1
     leftTruck > orientation=LEFT
         fastLtruck > speed=0.2
         slowLtruck > speed=0.1
 home frog > killSprite scoreChange=1
 frog log > changeResource resource=safety value=2
 frog log > pullWithIt
 frog wall > stepBack
 frog water > killIfHasLess resource=safety limit=0
 frog water > changeResource resource-safety value-1
 frog truck > killSprite scoreChange=-2
 log EOS > killSprite
 truck EOS > wrapAround
TerminationSet
 SpriteCounter stype=home win=True
```

VGDL Frogger

- Recent work on training models on existing levels to generate new levels
 - ♦ Sequence Prediction using LSTMs
 - Conceptual blending

 Gow and Corneli proposed generating new games by blending entire games

```
forest > SpawnPoint stype=log
   dense > prob=0.4 cooldown=10
     sparse > prob=0.1 cooldown=5
  log > Missile orientation=LEFT speed=0.1
 safety > Resource limit=2
 frog > MovingAvatar
 truck > Missile ima=truck
     rightTruck > orientation=RIGHT
         fastRtruck > speed=0.2
         slowRtruck > speed=0.1
     leftTruck > orientation=LEFT
         fastLtruck > speed=0.2
         slowLtruck > speed=0.1
 home frog > killSprite scoreChange=1
 frog log > changeResource resource=safety value=2
 frog log > pullWithIt
 frog wall > stepBack
 frog water > killIfHasLess resource=safety limit=0
 frog water > changeResource resource-safety value-1
  frog truck > killSprite scoreChange=-2
 log EOS > killSprite
 truck EOS > wrapAround
TerminationSet
 SpriteCounter stype=home win=True
```

VGDL Frogger

```
SpriteSet
  door > Door
  key > Immovable
  wall > Immovable
  sword > Flicker limit=5 singleton=True
 movable >
     link > ShootAvatar stype=sword
         nokev
         withkey
     monster > RandomNPC
         monsterQuick > cooldown=2
         monsterNormal > cooldown=4
         monsterSlow > cooldown=8
InteractionSet
 movable wall > stepBack
  nokey door > stepBack
  door withkey > killSprite scoreChange=1
  monster sword > killSprite scoreChange=2
  link monster > killSprite scoreChange=-:
                > killSprite scoreChange=1
  nokey key
               > transformTo stype=withkey
TerminationSet
  SpriteCounter stype-door win-True
 SpriteCounter stype=link win=False
```

VGDL Zelda

- Recent work on training models on existing levels to generate new levels
 - ♦ Sequence Prediction using LSTMs
 - ♦ Conceptual blending

 Gow and Corneli proposed generating new games by blending entire games

```
forest > SpawnPoint stype=log
   dense > prob=0.4 cooldown=10
     sparse > prob=0.1 cooldown=5
 log > Missile orientation=LEFT speed=0.1
 safety > Resource limit=2
 frog > MovingAvatar
 truck > Missile ima=truck
     rightTruck > orientation=RIGHT
         fastRtruck > speed=0.2
         slowRtruck > speed=0.1
     leftTruck > orientation=LEFT
         fastLtruck > speed=0.2
         slowLtruck > speed=0.1
 home frog > killSprite scoreChange=1
 frog log > changeResource resource=safety value=2
 frog log > pullWithIt
 frog wall > stepBack
 frog water > killIfHasLess resource=safety limit=0
 frog water > changeResource resource-safety value--1
 frog truck > killSprite scoreChange=-2
 log EOS > killSprite
 truck EOS > wrapAround
TerminationSet
 SpriteCounter stype=home win=True
```

VGDL Frogger

VGDL Zelda

Frolda

- Recent work on training models on existing levels to generate new levels
 - ♦ Sequence Prediction using LSTMs

IDEA: PCGML techniques + Game Blending

♦ Gow and generating have games

SpriteSet
forest > SpawmPoint stype=log
dense > prob=0.4 cooldown=10
sparse > prob=0.1 cooldown=5
structure > Immovable
home > Door
water
wall
log > Missile orientation=LEFT speed=0.1
safety > Resource limit=2
frog > MovingAvatar
truck > Missile img=truck
rightTruck > orientation=RIGHT
fastRtruck > speed=0.2
slowRtruck > speed=0.1
leftTruck > orientation=LEFT
fastLtruck > speed=0.2
slowLtruck > speed=0.2

SpriteSet
door > Door
key > Immovable
wall > Immovable
sword > Flicker limit=5 singleton=True
movable >
 link > ShootAvatar stype=sword
 nokey
 withkey
monster > RandomNPC
monsterQuick > cooldown=2
monsterNormal > cooldown=4
monsterSlow > cooldown=8

GDL Zelda

Frolda

Overview

♦ Train LSTMs on existing levels of *Super Mario Bros.* and *Kid Icarus*

Overview

♦ Train LSTMs on existing levels of *Super Mario Bros.* and *Kid Icarus*

 Sample from the trained models to generate new levels that contain properties of levels from both games

Overview

♦ Train LSTMs on existing levels of *Super Mario Bros.* and *Kid Icarus*

 Sample from the trained models to generate new levels that contain properties of levels from both games

Used weights to control approximate amount of each game

Dataset

- ♦ Video Game Level Corpus (VGLC)
 - ♦ Super Mario Bros. (15)
 - ♦ Kid Icarus (6)

Dataset

- ♦ Video Game Level Corpus (VGLC)
 - ♦ Super Mario Bros. (15)
 - ♦ Kid Icarus (6)

 ♦ Levels are represented as text files with each character mapping to a specific tile

SMB Level 1-1

KI Level 1

- ♦ Conceptual blending
 - ♦ Two input spaces
 - ♦ A generic space
 - ♦ A blend space

- Conceptual blending
 - ♦ Two input spaces
 - ♦ A generic space
 - ♦ A blend space
- ♦ Input spaces were VGLC SMB and KI corpora

```
"tiles" : {
    "X" : ["solid","ground"],
    "S" : ["solid","breakable"],
    "-" : ["passable","empty"],
    "?" : ["solid","question block", "full question block"],
    "Q" : ["solid","question block", "empty question block"],
    "E" : ["enemy","damaging","hazard","moving"],
    "<" : ["solid","top-left pipe","pipe"],
    ">" : ["solid","top-right pipe","pipe"],
    "[" : ["solid","left pipe","pipe"],
    "]" : ["solid","right pipe","pipe"],
    "o" : ["coin","collectable","passable"]
}
```

SMB Mapping

```
"tiles" : {
    "#" : ["solid","ground"],
    "-" : ["passable","empty"],
    "D" : ["solid","openable","door"],
    "H" : ["solid","damaging","hazard"],
    "M" : ["solidtop","passable","moving","platform"],
    "T" : ["solidtop","passable","platform"]
}
```

- Conceptual blending
 - ♦ Two input spaces
 - ♦ A generic space
 - ♦ A blend space
- ♦ Input spaces were VGLC SMB and KI corpora
- ♦ For generic space, mapped semantically common elements to a uniform representation and preserved unique elements

```
generic mapping = {
    # already generic
    "-": "-".
    # mario to generic
    "X": "X",
    "E": "E",
    "Q": "Q",
    "?": "?",
    "<": "<".
    ">": ">",
    "[": "[",
    "]": "]",
    "0": "0",
    "S": "S".
    # icarus to generic
    "#": "X",
    "H": "E",
    "T": "T",
    "M": "M",
    "D": "D"
```

Generic Mapping

- Conceptual blending
 - ♦ Two input spaces
 - ♦ A generic space
 - ♦ A blend space
- ♦ Input spaces were VGLC SMB and KI corpora
- ♦ For generic space, mapped semantically common elements to a uniform representation and preserved unique elements
- Common elements were solid ground, enemy/hazard and the background character

```
generic mapping = {
    # already generic
    "-": "-",
    # mario to generic
    "X": "X",
    "?": "?",
    "<": "<".
    ">": ">".
    "]": "]",
    "o": "o",
    "S": "S".
    # icarus to generic
```

Generic Mapping

♦ Used Long Short Term Memory networks (LSTMs) for training

- Used Long Short Term Memory networks (LSTMs) for training
 - Predicts next item in a sequence given the
 sequence thus far using learned probability distribution

Summerville and Mateas, 2016

- Used Long Short Term Memory networks (LSTMs) for training
 - Predicts next item in a sequence given the
 sequence thus far using learned probability distribution
 - ♦ Past success in generating SMB levels

Summerville and Mateas, 2016

♦ Each level is a collection of sequences and each tile is a point in a sequence

Summerville and Mateas, 2016

♦ Each level is a collection of sequences and each tile is a point in a sequence

♦ SMB → feed in sequences of columns from left to right
 KI → feed in sequences of rows from bottom to top

Summerville and Mateas, 2016

♦ Each level is a collection of sequences and each tile is a point in a sequence

♦ SMB → feed in sequences of columns from left to right
 KI → feed in sequences of rows from bottom to top

♦ LSTM was trained on sequences of 16 characters

Summerville and Mateas, 2016

Should a generated sequence be laid out like an SMB column or a KI row?

♦ Three generators

- ♦ Three generators
 - &Unweighted generator UW that used model trained on combined dataset

- ♦ Three generators
 - Onweighted generator UW that used model trained on combined dataset
 - Weighted generator WC that used model trained on combined dataset

- ♦ Three generators
 - Unweighted generator UW that used model trained on combined dataset
 - Weighted generator WC that used model trained on combined dataset
 - Weighted generator WS that used the models trained separately i.e. consisted of an SMB-only sub generator and a KI-only sub generator

- ♦ Three generators
 - Unweighted generator UW that used model trained on combined dataset
 - Weighted generator WC that used model trained on combined dataset
 - Weighted generator WS that used the models trained separately i.e. consisted of an SMB-only sub generator and a KI-only sub generator

♦ For UW, generated levels consisting of 200 sequences

- ♦ Three generators
 - Unweighted generator UW that used model trained on combined dataset
 - Weighted generator WC that used model trained on combined dataset
 - Weighted generator WS that used the models trained separately i.e. consisted of an SMB-only sub generator and a KI-only sub generator

♦ For UW, generated levels consisting of 200 sequences

♦ For both WC and WS, generated levels consisting of 10 segments of 20 sequences each

Weighted Generator 1

Weighted Generator 2

Weighted Generator 2

Weighted Generator 2

Weighted Generator 2

Weighted Generator 2

Weighted Generator 2

Weighted Generator 2

- ♦ Three cases:
 - ♦ Column after column/Row after row
 - ♦ Row after column
 - ♦ Column after row

- ♦ Three cases:
 - ♦ Column after column/Row after row
 - ♦ Stack one after another
 - ♦ Row after column
 - ♦ Column after row

- ♦ Three cases:
 - ♦ Column after column/Row after row
 - ♦ Row after column
 - Align row with topmost point of column on which player can stand
 - ♦ Column after row

- ♦ Three cases:
 - ♦ Column after column/Row after row
 - ♦ Row after column
 - ♦ Column after row
 - Align topmost point of column on which player can stand with the row

♦ Generated sequences are laid out using a basic algorithm

- ♦ Three cases:
 - ♦ Column after column/Row after row
 - ♦ Row after column
 - ♦ Column after row

♦ Layout function separate from generation

Example Levels

Example Levels

WS

Weighted Generation (0.5, 0.5)

(SMB=0.2, KI=0.8)

(SMB=0.2, KI=0.8)

(SMB=0.4, KI=0.6)

(SMB=0.2, KI=0.8)

(SMB=0.4, KI=0.6)

(SMB=0.5, KI=0.5)

(SMB=0.2, KI=0.8)

(SMB=0.4, KI=0.6)

(SMB=0.5, KI=0.5)

(SMB=0.6, KI=0.4)

(SMB=0.2, KI=0.8)

(SMB=0.4, KI=0.6)

(SMB=0.5, KI=0.5)

(SMB=0.6, KI=0.4)

(SMB=0.8, KI=0.2)

 $\frac{Leniency}{-(\# \ Enemy \ Sprites + (0.5 \ * \# \ Gaps))}{\# \ Sequences \ in \ Level}$

Leniency -(# Enemy Sprites + (0.5 * # Gaps)) # Sequences in Level

 $\frac{Density}{(\# Ground + \# Platform)} \\ \frac{\# Sequences \ in \ Level}{}$

 $\frac{Leniency}{-(\# Enemy Sprites + (0.5 * \# Gaps))}{\# Sequences in Level}$

Sequence Density
Sequences in level in training set
Sequences in Level

Density (# Ground + # Platform) # Sequences in Level

Sequence Variation
Unique Sequences in level in training set
Sequences in Level

 $\frac{Leniency}{-(\# Enemy Sprites + (0.5 * \# Gaps))}{\# Sequences in Level}$

 $\frac{Density}{(\# Ground + \# Platform)}$ # Sequences in Level

Sequence Density
Sequences in level in training set
Sequences in Level

Sequence Variation
Unique Sequences in level in training set
Sequences in Level

Aspect Ratio
Rows in Level
Columns in Level

Results

Sequence Density

Sequence Variation

Aspect Ratio

Results

Leniency

Density

Discussion

♦ Altering weights impacted the type of levels generated and roughly interpolated between SMB and KI

Discussion

♦ Altering weights impacted the type of levels generated and roughly interpolated between SMB and KI

♦ Possible to generate levels that are a mix of levels from 2 games but can also be made to be more like one than the other

Discussion

♦ Altering weights impacted the type of levels generated and roughly interpolated between SMB and KI

♦ Possible to generate levels that are a mix of levels from 2 games but can also be made to be more like one than the other

Deviations suggest that these methods can also produce some novelty

* No playability tests were run nor playability/path-based information used in training, thus levels are currently not completable; using an agent to carve-out a path post-generation or encoding path info into training corpus could help

* No playability tests were run nor playability/path-based information used in training, thus levels are currently not completable; using an agent to carve-out a path post-generation or encoding path info into training corpus could help

♦ Blended levels necessitate blended mechanics to be fully playable

* No playability tests were run nor playability/path-based information used in training, thus levels are currently not completable; using an agent to carve-out a path post-generation or encoding path info into training corpus could help

♦ Blended levels necessitate blended mechanics to be fully playable

Other techniques such as evolutionary algorithms to evolve game mechanics

Contact
Anurag Sarkar
Northeastern University

sarkar.an@husky.neu.edu