Desire Path-Inspired Procedural Placement of Coins in a Platformer Game

Anurag Sarkar, Varun Sriram, Riddhi Padte, Jeffrey Cao, Seth Cooper

College of Computer and Information Science
Northeastern University

Motivation

Motivation

\diamond Collectibles such as coins, bonuses, power-ups feature in many games and genres

Motivation

\diamond Collectibles such as coins, bonuses, power-ups feature in many games and genres
Δ Collecting them is often a secondary objective either related or unrelated to a primary objective

Motivation

\diamond Collectibles such as coins, bonuses, power-ups feature in many games and genres
\diamond Collecting them is often a secondary objective either related or unrelated to a primary objective
Δ Automating placement of collectibles could save the designer's time by helping them focus on the primary goals of the level

Automated Placement

\diamond Items may decrease engagement if placed in a way that does not serve the primary objective of the levels

Andersen et al., 2011

Automated Placement

\diamond Items may decrease engagement if placed in a way that does not serve the primary objective of the levels
\diamond Placement should consider the level's primary objective and how the player achieves that goal

Andersen et al., 2011

Desire Paths

Desire Paths

\diamond Paths created by footfall rather than construction

Desire Paths

\diamond Paths created by footfall rather than construction
\diamond Represent a shortcut or less circuitous route than a constructed walkway

Desire Paths

\diamond Paths created by footfall rather than construction
\diamond Represent a shortcut or less circuitous route than a constructed walkway
\diamond We use desire paths to refer to simple paths through levels that players are likely to traverse

Desire Paths

\diamond Paths created by footfall rather than construction
\diamond Represent a shortcut or less circuitous route than a constructed walkway
\diamond We use desire paths to refer to simple paths through levels that players are likely to traverse
\diamond Placing collectibles along these paths may help placement

Iowa James: Treasure Hunter

\diamond Platformer game consisting of 14 levels developed in Unity

Iowa James: Treasure Hunter

\diamond Platformer game consisting of 14 levels developed in Unity
\diamond Goal is to reach treasure chest at the end of each level

Iowa James: Treasure Hunter

\diamond Platformer game consisting of 14 levels developed in Unity
\diamond Goal is to reach treasure chest at the end of each level
\diamond Several hazards that can kill the player

Iowa James: Treasure Hunter

\diamond Platformer game consisting of 14 levels developed in Unity
\diamond Goal is to reach treasure chest at the end of each level
\diamond Several hazards that can kill the player
\diamond Each level has 10 collectible coins

Placement Heuristics

Placement Heuristics

\diamond Main Heuristic
\diamond Coins should be on a single path

Placement Heuristics

\diamond Main Heuristic
\diamond Coins should be on a single path

\diamond Additional Heuristics
\diamond Coins should be well distributed throughout the level

Placement Heuristics

\diamond Main Heuristic
\diamond Coins should be on a single path

\diamond Additional Heuristics
\diamond Coins should be well distributed throughout the level
\diamond Coins should be clustered near curves and arcs

Path-Based Placement Algorithm

\diamond Inputs
\diamond Number of coins to place
\diamond Grid cell definition
\diamond Starting and ending locations
\diamond Player trajectories of players who won the level

Path-Based Placement Algorithm

- Step 1

For each grid cell $c=\left(x_{c} y_{c}\right)$, count proportion w_{c} of winning trajectories that pass through that cell.
$w_{c}=0 \rightarrow$ no winning trajectories went through
$w_{c}=1 \rightarrow$ all winning trajectories went through

Path-Based Placement Algorithm

- Step 2

Find the lowest cost A* path through the grid from start cell to end cell.

Cost to move from cell s to $t: \frac{|t-s|}{\max \left(w_{t}, e\right)^{2}}$

Path-Based Placement Algorithm

\diamond Step 3
Place the required number of coins evenly spaced along the path

Path-Based Placement Algorithm

- Step 4

For each grid cell p_{i} along the path, compute a priority value r_{i} using an estimate of the local deviation from a straight line

$$
r_{i}=\left|p_{i}-0.5 *\left(p_{i-1}+p_{i+1}\right)\right|^{2}+\left|p_{i}-0.5 *\left(p_{i-2}+p_{i+2}\right)\right|
$$

Path-Based Placement Algorithm

- Step 5

Given a coin at p_{i}
If $r_{i+1}>r_{i}$ and no coin at p_{i+1} or p_{i+2} Move coin to p_{i+l}

If $r_{i-1}>r_{i}$ and no coin at p_{i-1} or $p_{i, 2}$
Move the coin to p_{i-1}.

Iterate through all coins, moving each if needed until no coin moves

Path-Based Placement Algorithm

\diamond Outputs
List of coin locations

Participant Recruitment and Study

\diamond Players recruited using Mechanical Turk
\diamond Two Human Intelligence Tasks (HITs)
\diamond Player Trajectories
\diamond Coin Placement Evaluation

Player Trajectories HIT

$\diamond 200$ participants (160 completed)
\diamond No coins or associated UI

- Introductory level same for everyone, but remaining levels randomized
\diamond Gathered trajectories of player movement during gameplay

\diamond Data from this HIT only used to gather trajectories and not for evaluation

Path Evaluation HIT

$\diamond 1600$ participants (1226 completed)
\diamond Levels were served in order of decreasing player success rate from previous HIT
\diamond Players randomly assigned into one of 4 conditions:

Path Evaluation HIT

$\diamond 1600$ participants (1226 completed)
\diamond Levels were served in order of decreasing player success rate from previous HIT
\diamond Players randomly assigned into one of 4 conditions:

NONE

Path Evaluation HIT

$\diamond 1600$ participants (1226 completed)
\diamond Levels were served in order of decreasing player success rate from previous HIT
\diamond Players randomly assigned into one of 4 conditions:

NONE

PATH

Path Evaluation HIT

$\diamond 1600$ participants (1226 completed)
\diamond Levels were served in order of decreasing player success rate from previous HIT
\diamond Players randomly assigned into one of 4 conditions:

NONE

DSGN

PATH

Path Evaluation HIT

$\diamond 1600$ participants (1226 completed)
\diamond Levels were served in order of decreasing player success rate from previous HIT
\diamond Players randomly assigned into one of 4 conditions:

NONE

DSGN

PATH

RAND

Evaluation Measures

\diamond Levels Won
\diamond Finish Rate
\diamond Total Time
\diamond Per-Level Time

Results

	NONE	PATH	DSGN	RAND
Levels Won	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{3}$
Finish Rate (\%)	8	10	6	6
Total Time (s)	224	216	226	174
Per-Level Time (s)	$\mathbf{3 8}$	$\mathbf{3 7}$	47	$\mathbf{4 1}$
Total Coins		$\mathbf{3 8}$	$\mathbf{2 5}$	$\mathbf{2 6}$
Per-Level Coins		$\mathbf{8}$	$\mathbf{6}$	$\mathbf{6}$

Statistical Tests: Omnibus Kruskal-Wallis Test, post-hoc Wilcoxon Rank-Sum Test

Results

	NONE	PATH	DSGN	RAND
Levels Won	5	4	4	3
Finish Rate (\%)	8	10	6	6
Total Time (s)	224	216	226	174
Per-Level Time (s)	38	37	47	41
Total Coins		38	25	26
Per-Level Coins		8	6	6

Statistical Tests: Omnibus Kruskal-Wallis Test, post-hoc Wilcoxon Rank-Sum Test

Results

	NONE	PATH	DSGN	RAND
Levels Won	5	4	4	3
Finish Rate (\%)	8	10	6	6
Total Time (s)	224	216	226	174
Per-Level Time (s)	38	37	47	41
Total Coins		38	25	26
Per-Level Coins		8	6	6

Statistical Tests: Omnibus Kruskal-Wallis Test, post-hoc Wilcoxon Rank-Sum Test
\diamond Additional pair-wise similarities:
\diamond PATH \& DSGN for Levels Won
\diamond RAND, PATH \& NONE for Per-Level Time

Discussion

\diamond Players collected more coins in PATH than in DSGN and RAND

Discussion

\diamond Players collected more coins in PATH than in DSGN and RAND
\diamond Players spent most time playing each level in DSGN

Discussion

\diamond Players collected more coins in PATH than in DSGN and RAND
\diamond Players spent most time playing each level in DSGN
\diamond Similar to Andersen et al., we found NONE and PATH to not be significantly different

Discussion

- While they saw upward trend for time played with on-path coins, we saw a downward trend for time played and levels won

Discussion

\diamond While they saw upward trend for time played with on-path coins, we saw a downward trend for time played and levels won

Discussion

\diamond While they saw upward trend for time played with on-path coins, we saw a downward trend for time played and levels won
\diamond Path of coins may help player only if levels are sufficiently hard

Conclusion

\diamond Absent of other utilities, collectibles do not necessarily incentivize players to complete more levels or play for longer even when serving primary objective

Conclusion

\diamond Absent of other utilities, collectibles do not necessarily incentivize players to complete more levels or play for longer even when serving primary objective
\diamond Collectibles might help only for sufficiently hard levels

Conclusion

\diamond Absent of other utilities, collectibles do not necessarily incentivize players to complete more levels or play for longer even when serving primary objective
\diamond Collectibles might help only for sufficiently hard levels
\diamond Placement strategy depends on designer goals
\diamond PATH - help players complete levels more quickly
\diamond DSGN - make players explore more

Future Work

\diamond Other games and genres
\diamond Wider design space
\diamond Subjective experience of players
\diamond Other heuristics

Contact

Anurag Sarkar
 Northeastern University
 sarkar.an@husky.neu.edu

Acknowledgments

The authors would like to thank Liam Fratturo for the designer coin placement

