Desire Path-Inspired Procedural Placement of Coins in a Platformer Game

Anurag Sarkar, Varun Sriram, Riddhi Padte, Jeffrey Cao, Seth Cooper

College of Computer and Information Science Northeastern University

https://www.gamasutra.com/view/news/243310/6_musts_for_a_perfect_platformer_from_the_YookaLaylee_team.php

 Collectibles such as coins, bonuses, power-ups feature in many games and genres

- Collectibles such as coins, bonuses, power-ups feature in many games and genres
- Collecting them is often a secondary objective either related or unrelated to a primary objective

https://www.gamasutra.com/view/news/243310/6_musts_for_a_perfect_platformer_from_the_YookaLaylee_team.php

 Collectibles such as coins, bonuses, power-ups feature in many games and genres

 Collecting them is often a secondary objective either related or unrelated to a primary objective

Automating placement of collectibles could save the designer's time by helping them focus on the primary goals of the level

https://www.gamasutra.com/view/news/243310/6_musts_for_a_perfect_platformer_from_the_YookaLaylee_team.php

Automated Placement

 Items may decrease engagement if placed in a way that does not serve the primary objective of the levels

Andersen et al., 2011

Automated Placement

Items may decrease engagement if placed in a way that does not serve the primary objective of the levels

Placement should consider the level's primary objective and how the player achieves that goal

Andersen et al., 2011

 Paths created by footfall rather than construction

- Paths created by footfall rather than construction
- Represent a shortcut or less circuitous route than a constructed walkway

- Paths created by footfall rather than construction
- Represent a shortcut or less circuitous route than a constructed walkway
- We use *desire paths* to refer to simple paths through levels that players are likely to traverse

- Paths created by footfall rather than construction
- Represent a shortcut or less circuitous route than a constructed walkway
- We use *desire paths* to refer to simple paths through levels that players are likely to traverse
- Placing collectibles along these paths may help placement

 Platformer game consisting of 14 levels developed in Unity

 Platformer game consisting of 14 levels developed in Unity

 Goal is to reach treasure chest at the end of each level

 Platformer game consisting of 14 levels developed in Unity

- ♦ Goal is to reach treasure chest at the end of each level
- Several hazards that can kill the player

 Platformer game consisting of 14 levels developed in Unity

- Goal is to reach treasure chest at the end of each level
- Several hazards that can kill the player
- Each level has 10 collectible coins

♦ Main Heuristic

♦ Coins should be on a single path

♦ Main Heuristic

Coins should be on a single path

♦ Additional Heuristics

♦ Main Heuristic

Coins should be on a single path

Additional Heuristics

♦ Inputs

- Number of coins to place
- Starting and ending locations
- Player trajectories of players who won the level

♦ Step 1

For each grid cell $c = (x_c, y_c)$, count proportion w_c of winning trajectories that pass through that cell.

 $w_c = 0 \rightarrow$ no winning trajectories went through $w_c = 1 \rightarrow$ all winning trajectories went through

\Leftrightarrow Step 2

Find the lowest cost A* path through the grid from start cell to end cell.

$$\frac{|t - s|}{\max(w_t, e)^2}$$

 \Leftrightarrow Step 3

Place the required number of coins evenly spaced along the path

\Leftrightarrow Step 4

For each grid cell p_i along the path, compute a priority value r_i using an estimate of the local deviation from a straight line

 $r_i = |\overline{p_i - 0.5 * (p_{i-1} + p_{i+1})|^2} + |\overline{p_i - 0.5 * (p_{i-2} + p_{i+2})|}$

♦ Step 5
Given a coin at *p_i*If *r_{i+1}* > *r_i* and no coin at *p_{i+1}* or *p_{i+2}*

Move coin to p_{i+1} If $r_{i-1} > r_i$ and no coin at p_{i-1} or p_{i-2} Move the coin to p_{i-1} .

Iterate through all coins, moving each if needed until no coin moves

*Outputs*List of coin locations

Participant Recruitment and Study

Players recruited using Mechanical Turk

Two Human Intelligence Tasks (HITs)
 Player Trajectories
 Coin Placement Evaluation

Player Trajectories HIT

♦ 200 participants (160 completed)

♦ No coins or associated UI

 Introductory level same for everyone, but remaining levels randomized

 Gathered trajectories of player movement during gameplay

 Data from this HIT only used to gather trajectories and not for evaluation

- ♦ 1600 participants (1226 completed)
- * Levels were served in order of decreasing player success rate from previous HIT
- ♦ Players randomly assigned into one of 4 conditions:

- ♦ 1600 participants (1226 completed)
- * Levels were served in order of decreasing player success rate from previous HIT
- ♦ Players randomly assigned into one of 4 conditions:

- ♦ 1600 participants (1226 completed)
- * Levels were served in order of decreasing player success rate from previous HIT
- ♦ Players randomly assigned into one of 4 conditions:

- ♦ 1600 participants (1226 completed)
- * Levels were served in order of decreasing player success rate from previous HIT
- ♦ Players randomly assigned into one of 4 conditions:

PATH

DSGN

- ♦ 1600 participants (1226 completed)
- * Levels were served in order of decreasing player success rate from previous HIT
- ♦ Players randomly assigned into one of 4 conditions:

NONE

DSGN

Evaluation Measures

♦ Levels Won

♦ Total Coins

♦Finish Rate

Per-Level Coins

♦ Total Time

♦ Per-Level Time

Results

	NONE	PATH	DSGN	RAND
Levels Won	5	4	4	3
Finish Rate (%)	8	10	6	6
Total Time (s)	224	216	226	174
Per-Level Time (s)	38	37	47	41
Total Coins		38	25	26
Per-Level Coins		8	6	6

Statistical Tests: Omnibus Kruskal-Wallis Test, post-hoc Wilcoxon Rank-Sum Test

Results

	NONE	PATH	DSGN	RAND
Levels Won	5	4	4	3
Finish Rate (%)	8	10	6	6
Total Time (s)	224	216	226	174
Per-Level Time (s)	38	37	47	41
Total Coins		38	25	26
Per-Level Coins		8	6	6

Statistical Tests: Omnibus Kruskal-Wallis Test, post-hoc Wilcoxon Rank-Sum Test

Results

	NONE	PATH	DSGN	RAND
Levels Won	5	4	4	3
Finish Rate (%)	8	10	6	6
Total Time (s)	224	216	226	174
Per-Level Time (s)	<u>38</u>	37	47	41
Total Coins		38	25	26
Per-Level Coins		8	6	6

Statistical Tests: Omnibus Kruskal-Wallis Test, post-hoc Wilcoxon Rank-Sum Test

♦ Additional pair-wise similarities:

- ♦ PATH & DSGN for *Levels Won*
- ♦ RAND, PATH & NONE for *Per-Level Time*

Players collected more coins in PATH than in DSGN and RAND

Players collected more coins in PATH than in DSGN and RAND

Players collected more coins in PATH than in DSGN and RAND

Similar to Andersen et al., we found NONE and PATH to not be significantly different

Discussion

 While they saw upward trend for time played with on-path coins, we saw a downward trend for time played and levels won

Discussion

 While they saw upward trend for time played with on-path coins, we saw a downward trend for time played and levels won

Discussion

 While they saw upward trend for time played with on-path coins, we saw a downward trend for time played and levels won

 Path of coins may help player only if levels are sufficiently hard

Conclusion

 Absent of other utilities, collectibles do not necessarily incentivize players to complete more levels or play for longer even when serving primary objective

Conclusion

 Absent of other utilities, collectibles do not necessarily incentivize players to complete more levels or play for longer even when serving primary objective

Conclusion

 Absent of other utilities, collectibles do not necessarily incentivize players to complete more levels or play for longer even when serving primary objective

Collectibles might help only for sufficiently hard levels

Placement strategy depends on designer goals
 PATH – help players complete levels more quickly
 DSGN – make players explore more

Future Work

♦ Other games and genres

♦ Wider design space

♦ Subjective experience of players

♦ Other heuristics

Contact

Anurag Sarkar Northeastern University sarkar.an@husky.neu.edu

Acknowledgments

The authors would like to thank Liam Fratturo for the designer coin placement