Meet Your Match Rating: Providing Skill Information and Choice in Player-vs-Level Matchmaking

Anurag Sarkar and Seth Cooper
College of Computer and Information Science
Northeastern University

Human Computation Games (HCGs)

Games that motivate large numbers of people to solve tasks that are hard to automate

Nanocrafter

Xylem

Engagement and Difficulty Balancing

\diamond HCGs suffer from
\diamond Poor engagement
\diamond Poor player retention

Engagement and Difficulty Balancing

\diamond HCGs suffer from
\diamond Poor engagement
\diamond Poor player retention
\diamond REASON - Lack of difficulty balancing in HCGs

Engagement and Difficulty Balancing

\diamond HCGs suffer from
\diamond Poor engagement
\diamond Poor player retention
\diamond REASON - Lack of difficulty balancing in HCGs
\diamond No a priori knowledge of difficulty of tasks to be solved
\diamond Not possible to modify tasks without compromising validity of solutions

Solution: Player Rating Systems

\diamond In our previous work, we used rating systems to order levels for players by mapping player skill and level difficulty to ratings
\diamond Rating system could then be used to match players of certain skill with levels of comparable difficulty
\diamond Serving levels in an order determined by the
 Glicko-2 system was shown to improve player engagement

Skill Feedback \& Choice

\diamond Previous work performed matchmaking unbeknownst to players with players being oblivious to the rating system

Skill Feedback \& Choice

\diamond Previous work performed matchmaking unbeknownst to players with players being oblivious to the rating system
\diamond Further engagement benefits could be achieved by
\diamond Informing players of the matchmaking system

Skill Feedback \& Choice

\diamond Previous work performed matchmaking unbeknownst to players with players being oblivious to the rating system
\diamond Further engagement benefits could be achieved by
\diamond Informing players of the matchmaking system
\diamond Offering them choice of next level difficulty

Self Determination Theory (SDT)

\diamond Theory of human motivation and psychology

Self Determination Theory (SDT)

\diamond Theory of human motivation and psychology
\diamond Three innate psychological needs
\diamond Relatedness
\diamond Autonomy
\diamond Competence

Self Determination Theory (SDT)

\diamond Theory of human motivation and psychology
\diamond Three innate psychological needs
\diamond Relatedness (HCGs may already tap into this)
\triangleleft Autonomy
\diamond Competence

Self Determination Theory (SDT)

\diamond Theory of human motivation and psychology
\diamond Three innate psychological needs
\diamond Relatedness (HCGs may already tap into this)
\diamond Autonomy (by offering choice)
\diamond Competence (by providing skill feedback)

Hypotheses

\diamond H1 - Informing players of ratings and rating system will lead to better engagement and experience than not informing them

Hypotheses

\diamond H1 - Informing players of ratings and rating system will lead to better engagement and experience than not informing them
$\checkmark H 2$ - Additionally offering choice of level difficulty will lead to even better engagement and experience than when only informing them of the rating system

Paradox

\diamond 2D puzzle game for crowdsourced formal verification of software
\diamond Each level represents a MAX-SAT problem
\diamond Players assign values to variables, schedule optimizations
\diamond Player completes level by reaching target score

Participant Recruitment and Study

\diamond Players recruited using Mechanical Turk

amazon mechanicalturk"
Artificial Artificial Intelligence

Participant Recruitment and Study

\diamond Players recruited using Mechanical Turk
\diamond Two part study
\diamond Feedback \& Choice Experiment using Glicko-2 rating system
\diamond Post-Game Survey using Intrinsic Motivation Inventory (IMI)

amazon mechanicalturk"
 Artificial Artificial Intelligence

Participant Recruitment and Study

\diamond Players recruited using Mechanical Turk
\diamond Two part study
\diamond Feedback \& Choice Experiment using Glicko-2 rating system
$\diamond 9$ mandatory tutorial levels
๑ 55 optional challenge levels
\diamond Post-Game Survey using Intrinsic Motivation Inventory (IMI)

amazon mechanicalturk"
 Artificial Artificial Intelligence

Participant Recruitment and Study

\diamond Players recruited using Mechanical Turk
\diamond Two part study
\diamond Feedback \& Choice Experiment using Glicko-2 rating system
$\diamond 9$ mandatory tutorial levels
๑ 55 optional challenge levels
\diamond Post-Game Survey using Intrinsic Motivation Inventory (IMI)
$\diamond 25$ questions

amazon mechanicalturk ${ }^{\text {m' }}$
Artificial Artificial Intelligence

Ratings Feedback \& Choice Experiment

\diamond Player-level pairings considered as matches
\diamond Match outcomes:
\diamond Level Completed => Player wins

- Level Forfeited => Level wins
\diamond Level Skipped => Ignore

Ratings Feedback \& Choice Experiment

\diamond Player-level pairings considered as matches
\diamond Match outcomes:
Δ Level Completed => Player wins

- Level Forfeited => Level wins
\diamond Level Skipped => Ignore
\diamond Three experimental conditions
\diamond BLIND

BLIND

Ratings Feedback \& Choice Experiment

\diamond Player-level pairings considered as matches
\diamond Match outcomes:
Δ Level Completed => Player wins
\diamond Level Forfeited => Level wins
\diamond Level Skipped => Ignore
\diamond Three experimental conditions
\diamond BLIND
\diamond RATINGS

BLIND

RATINGS

Ratings Feedback \& Choice Experiment

\diamond Player-level pairings considered as matches
\diamond Match outcomes:
\diamond Level Completed => Player wins
\diamond Level Forfeited => Level wins
\diamond Level Skipped => Ignore
\diamond Three experimental conditions

\diamond BLIND
\diamond RATINGS
\diamond CHOICE

BLIND

RATINGS

Blind and Ratings Condition

Blind and Ratings Condition

BLIND

Blind and Ratings Condition

RATINGS

Choice Condition

CHOICE

Compute desired win
rate using
(player's rating +400)

Choice Condition

CHOICE

Choice Condition

CHOICE

VS.

Measures

$\diamond 278$ workers randomly assigned to one of the three conditions (BLIND - 111, RATINGS - 96, CHOICE - 71)

Measures

$\diamond 278$ workers randomly assigned to one of the three conditions (BLIND - 111, RATINGS - 96, CHOICE - 71)
\diamond Behavioral Engagement
\rightarrow Challenge Time
\diamond Levels Attempted
\diamond Levels Completed
\diamond Player Rating (Player's Glicko-2 rating after completing the game)
\diamond Highest Level Rating (Highest Glicko2 rating of any level completed by the player)

Measures

$\diamond 278$ workers randomly assigned to one of the three conditions (BLIND - 111, RATINGS - 96, CHOICE - 71)
\diamond Behavioral Engagement
\diamond Challenge Time
\diamond Levels Attempted
\diamond Levels Completed
\diamond Player Rating (Player's Glicko-2 rating after completing the game)
\diamond Highest Level Rating (Highest Glicko2 rating of any level completed by the player)
\diamond Intrinsic Motivation Inventory
\diamond Interest/Enjoyment
\diamond Perceived Competence
\diamond Perceived Choice
\diamond Effort / Importance

Results

Variable	BLIND	RATINGS	CHOICE
Challenge Time	515	791	897
Levels Attempted	7	10	12
Levels Completed	5	7	8

Statistical Tests: Omnibus Kruskal-Wallis Test, post-hoc Wilcoxon Rank-Sum Test
\diamond No significant difference across conditions for Player Rating and Highest Level Rating

Results

Variable	BLIND	RATINGS	CHOICE
Interest/Enjoyment	63%	65%	63%
Perceived Competence	57%	52%	57%
Perceived Choice	78%	80%	82%
Effort/Importance	83%	86%	83%

Statistical Tests: Omnibus Kruskal-Wallis Test, post-hoc Wilcoxon Rank-Sum Test
\diamond No significant difference across conditions for any survey variable

Discussion

\diamond H1 is partially supported
\diamond Players did better in terms of Challenge Time, Levels Attempted and Levels Completed under RATINGS as compared to BLIND
\diamond No improvement observed between two conditions in terms of Player Rating, Highest Level Rating or any survey variable

Discussion

\diamond H1 is partially supported
\diamond Players did better in terms of Challenge Time, Levels Attempted and Levels Completed under RATINGS as compared to BLIND
\diamond No improvement observed between two conditions in terms of Player Rating, Highest Level Rating or any survey variable
$\diamond H 2$ is rejected
\diamond No significant improvement in CHOICE condition for any measured variables as compared to RATINGS

Ratings Feedback Discussion

\diamond Informed players played longer and completed more levels

RATINGS

Ratings Feedback Discussion

\diamond Informed players played longer and completed more levels
\diamond But did not gain higher ratings or complete more difficult levels

RATINGS

Ratings Feedback Discussion

\diamond Informed players played longer and completed more levels
\diamond But did not gain higher ratings or complete more difficult levels
\diamond Informed players didn't try to game the system by attempting fewer levels to hold

RATINGS onto current rating

Choice Discussion

\diamond Choice of difficulty impacted neither engagement metrics nor experience measures in the survey

CHOICE

Choice Discussion

\diamond Choice of difficulty impacted neither engagement metrics nor experience measures in the survey
\diamond Perceived Choice not significantly increased under CHOICE
\diamond CHOICE offered explicit choices, but implicit choices in other conditions may have been meaningful enough
\diamond Players could skip levels and stop playing whenever they wanted to in all

CHOICE conditions

Choice of Level Difficulty

\diamond Choice of level difficulty often impacted by previous match outcome

Previous Result	Easy	Recommen ded	Hard
Complete (Win)	40%	49%	11%
Forfeit (Loss)	41%	36%	23%
Skip	57%	32%	11%

Percentage of times each option selected given last outcome

$$
x^{2}(4)=37.3, p<0.001
$$

Choice of Level Difficulty

\diamond Choice of level difficulty often impacted by previous match outcome
\diamond Win \rightarrow Recommended

Previous Result	Easy	Recommen ded	Hard
Complete (Win)	40%	$\mathbf{4 9} \%$	11%
Forfeit (Loss)	41%	36%	23%
Skip	57%	32%	11%

Percentage of times each option selected given last outcome

$$
x^{2}(4)=37.3, p<0.001
$$

Choice of Level Difficulty

\diamond Choice of level difficulty often impacted by previous match outcome
\diamond Win \rightarrow Recommended
\diamond Skip \rightarrow Easy

Previous Result	Easy	Recommen ded	Hard
Complete (Win)	40%	49%	11%
Forfeit (Loss)	41%	36%	23%
Skip	57%	32%	11%

Percentage of times each option selected given last outcome

$$
x^{2}(4)=37.3, p<0.001
$$

Choice of Level Difficulty

\diamond Choice of level difficulty often impacted by previous match outcome
\diamond Win \rightarrow Recommended
\diamond Skip \rightarrow Easy
\diamond Forfeit \rightarrow Hard more often than after a win or a skip

Previous Result	Easy	Recommen ded	Hard
Complete (Win)	40%	49%	11%
Forfeit (Loss)	41%	36%	$\mathbf{2 3} \%$
Skip	57%	32%	11%

Percentage of times each option selected given last outcome

$$
x^{2}(4)=37.3, p<0.001
$$

Conclusion

\diamond Skill feedback increased player engagement in terms of number of levels attempted and completed and time spent playing

Conclusion

\diamond Skill feedback increased player engagement in terms of number of levels attempted and completed and time spent playing
\diamond Offering choice of difficulty improved player engagement but not significantly and the choice made by players was impacted by previous match outcome

Future Work

\diamond Examination of how meaningful different choices are

Future Work

\diamond Examination of how meaningful different choices are
\diamond Effects of previous match outcomes on player choice

Contact

Anurag Sarkar Northeastern University sarkar:an@husky.neu.edu

Acknowledgments

This material is based upon work supported by the National Science Foundation under grant no. 1652537. We would like to thank the University of Washington's Center for Game Science for initial Paradox development.

