Controllable Level Blending between Games using Variational Autoencoders

Anurag Sarkar¹, Zhihan Yang² and Seth Cooper¹

¹Northeastern University

²Carleton College

(Towards) Controllable Level Blending between Games using Variational Autoencoders

Anurag Sarkar¹, Zhihan Yang² and Seth Cooper¹

¹Northeastern University

²Carleton College

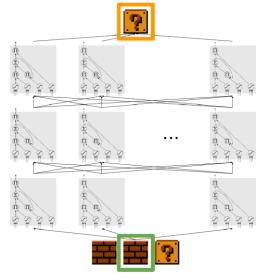
(Towards) Controllable Level Blending between Games using Variational Autoencoders

Still no playability!

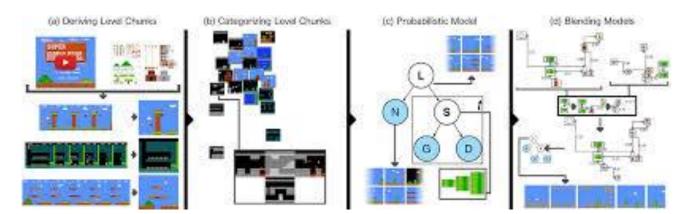
Promising results and future directions!

Motivation

- Past work on training models on existing levels to generate new levels
 - Sequence prediction using LSTMs
 - Conceptual blending using graphical models



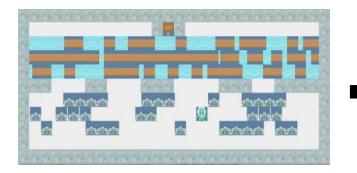
Summerville and Mateas, 2016



Guzdial and Riedl, 2016

Motivation

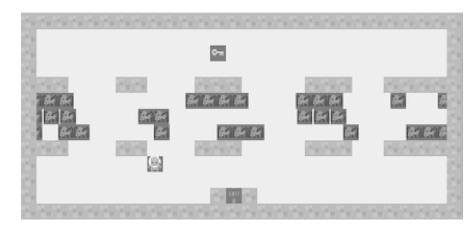
- Past work on training models on existing levels to generate new levels
 - Sequence prediction using LSTMs
 - Conceptual blending using graphical models



VGDL Frogger

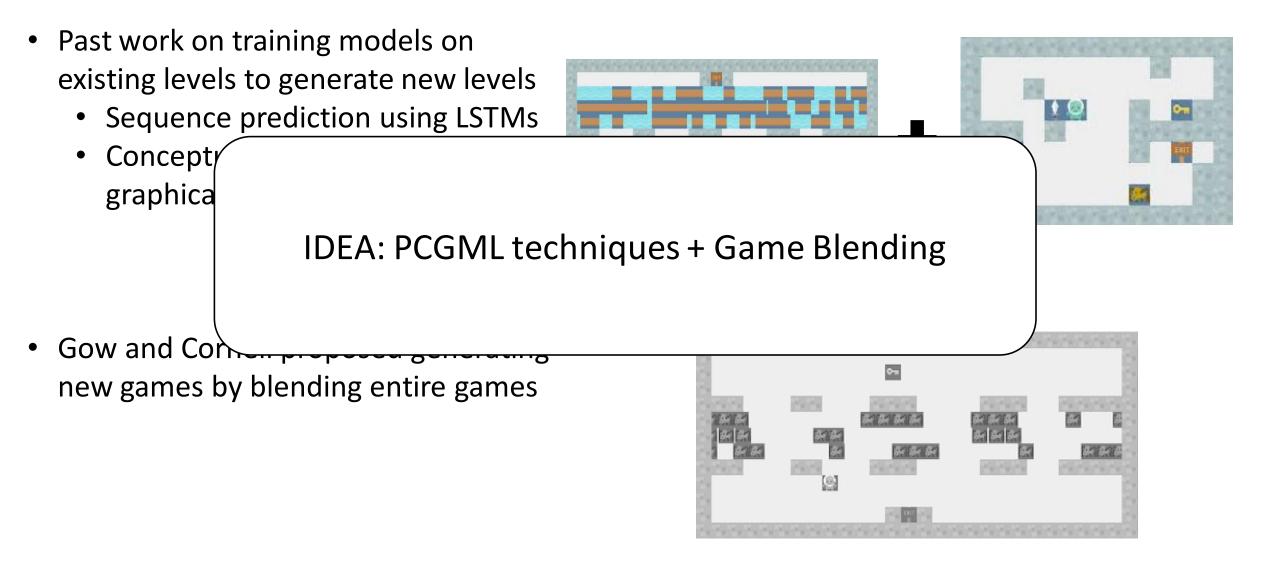
VGDL Zelda

• Gow and Corneli proposed generating new games by blending entire games



Frolda

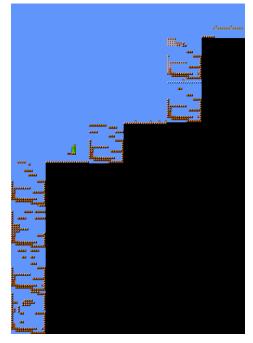
Motivation



Blending Levels using LSTMs

• Trained LSTMs on levels of *Super Mario Bros.* and *Kid Icarus*

• Sampled from trained models to generate levels containing properties of both games



(SMB=0.2, KI=0.8)

 Parametrized generator with weights to control approximate percentage of each game in blended level

(SMB=0.8, KI=0.2)

Drawbacks

• Blended levels by taking turns between *Super Mario Bros.* and *Kid Icarus*

• Allowed control of proportion of each game in blended level but no control over more fine-grained tile-based properties

Solution: Variational Autoencoder (VAE)

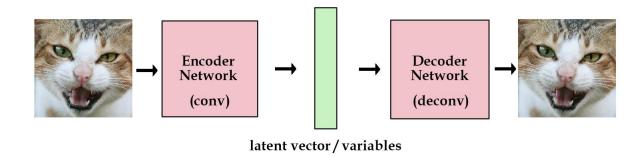
 Enables more holistic blending of level properties by capturing latent space across both games

- Allows generation of segments satisfying specific properties

 More conducive to co-creative level design

Variational Autoencoder

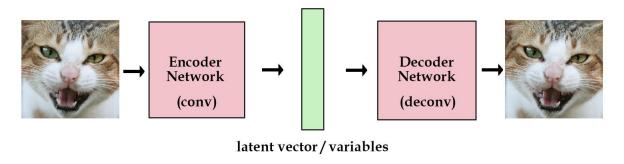
- Autoencoders are neural nets that learn lower-dimensional data representations
 - Encoder \rightarrow input data to latent space
 - Decoder → latent space to reconstructed data



Vanilla Autoencoder

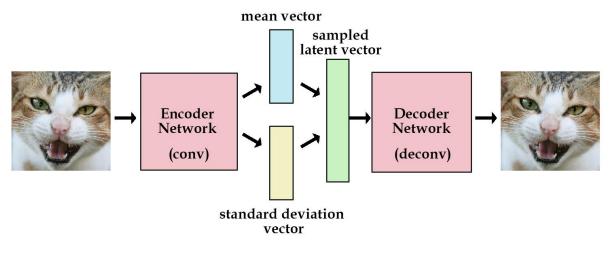
Variational Autoencoder

- Autoencoders are neural nets that learn lower-dimensional data representations
 - Encoder \rightarrow input data to latent space
 - Decoder → latent space to reconstructed data



Vanilla Autoencoder

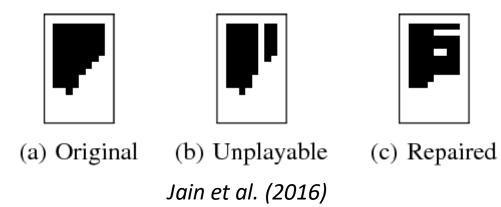
- VAEs make latent space model a probability distribution (e.g. Gaussian)
 - Allows learning continuous latent spaces
 - Enables generative abilities similar to those of GANs

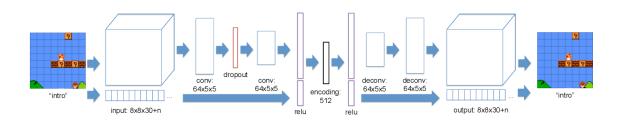


Variational Autoencoder

Motivation for VAE

- Past work in using autoencoders for Mario level generation
 - Autoencoders for Level Generation, Repair and Recognition, Jain et al. (2016)
 - Explainable PCGML via Design Patterns, Guzdial et al. (2018)



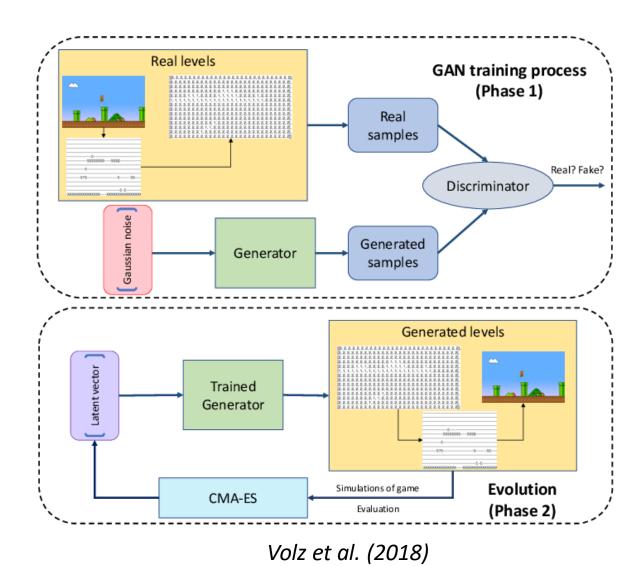


Guzdial et al. (2018)

Motivation for VAE

- Past work in using autoencoders for Mario level generation
 - Autoencoders for Level Generation, Repair and Recognition, Jain et al. (2016)
 - Explainable PCGML via Design Patterns, Guzdial et al. (2018)

 Evolving Mario Levels in the Latent Space of a DCGAN (i.e. MarioGAN), Volz et al. (2018)

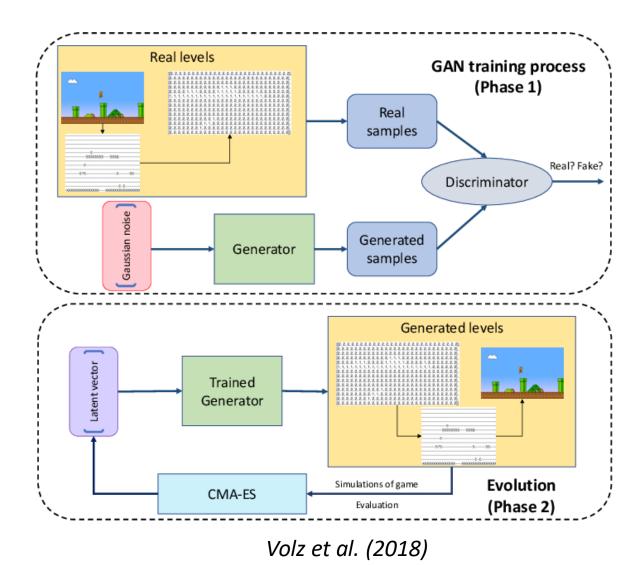


Motivation for VAE

- Past work in using autoencoders for Mario level generation
 - Autoencoders for Level Generation, Repair and Recognition, Jain et al. (2016)
 - Explainable PCGML via Design Patterns, Guzdial et al. (2018)

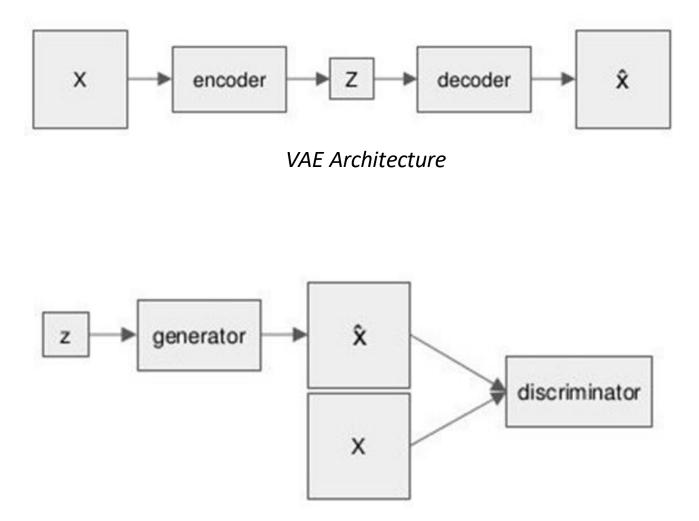
 Evolving Mario Levels in the Latent Space of a DCGAN (i.e. MarioGAN), Volz et al. (2018)

• Use MarioGAN-based approach to capture latent space of 2 games instead of 1



Why VAE over GAN?

- VAE architecture more conducive to co-creative level design
 - Designers don't have to directly use latent space vectors
 - More explicit control in defining inputs to the system
 - More useful to blend/interpolate between known segments rather than latent vectors

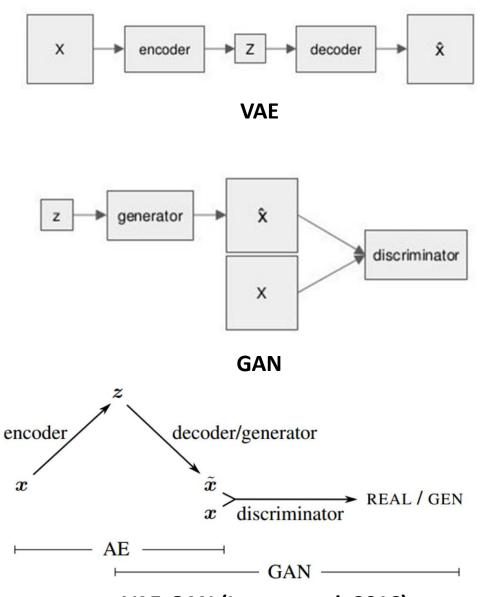


GAN Architecture

VAE vs GAN vs VAE-GAN

 Trained a GAN and a VAE-GAN in addition to the VAE to compare generative capabilities in a level blending context

- VAE-GAN is a hybrid generative model
 - Combines VAE and GAN by collapsing VAE decoder into a GAN generator



VAE-GAN (Larsen et al. 2016)

Dataset and Training

 Trained on a level each from SMB (Level 1-1) and KI (Level 5) taken from the Video Game Level Corpus (VGLC)

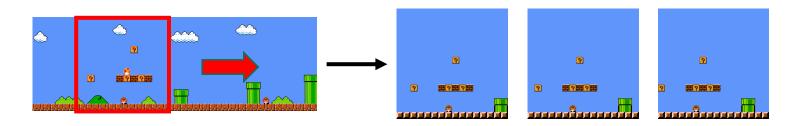
• Each level is a 2D character array

• Each tile type was encoded using an integer and then with one-hot encoding for training

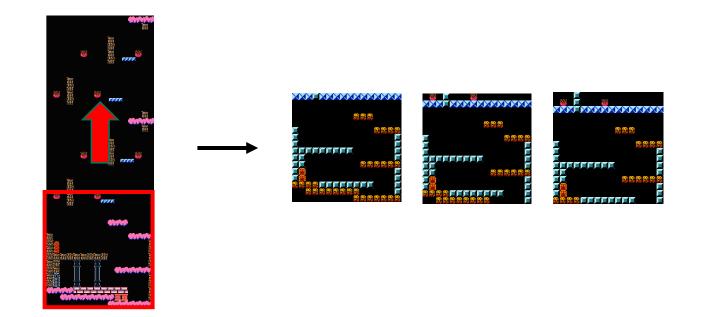
Tile Type	VGLC	Integer	Sprite
SMB Ground	Х	0	
SMB Breakable	S	1	苦
SMB Background	-	2	
SMB Full Question	?	3	2
SMB Empty Question	Q	4	2
SMB Enemy	Е	5	
SMB Pipe Top Left	<	6	
SMB Pipe Top Right	>	7	
SMB Pipe Bottom Left	[8	
SMB Pipe Bottom Right]	9	
SMB Coin	0	10	0)
KI Platform	Т	11	
KI Movable Platform	Μ	12	×
KI Door	D	13	
KI Ground	#	14	
KI Hazard	Н	15	100
KI Background	-	16	

Dataset and Training

- To account for orientation, used 16x16 sliding window
- 187 segments of SMB + 191 segments of KI = 378 total segments



- Models learned to generate
 16x16 blended level segments
- VAE, GAN and VAE-GAN all trained using same number of segments and with similar training conditions



Generation

• Trained models generate 16x16 segments in combined SMB-KI latent level design space

• Generation involves feeding a latent vector into the VAE's decoder which outputs a onehot encoded array which is converted to the 16x16 level segment

- Two generation methods
 - Like GANs, use random latent vectors or evolve optimal vectors using search
 - Unlike GANs, generate segments based on input segments

Evaluation

• Used

		0%	100%
 Used four metrics for evaluation Density Difficulty Non-Linearity 	Density		
• SMB Proportion	Difficulty		
	Non-Linearity		
	SMB Proportion		

Evaluation

100%

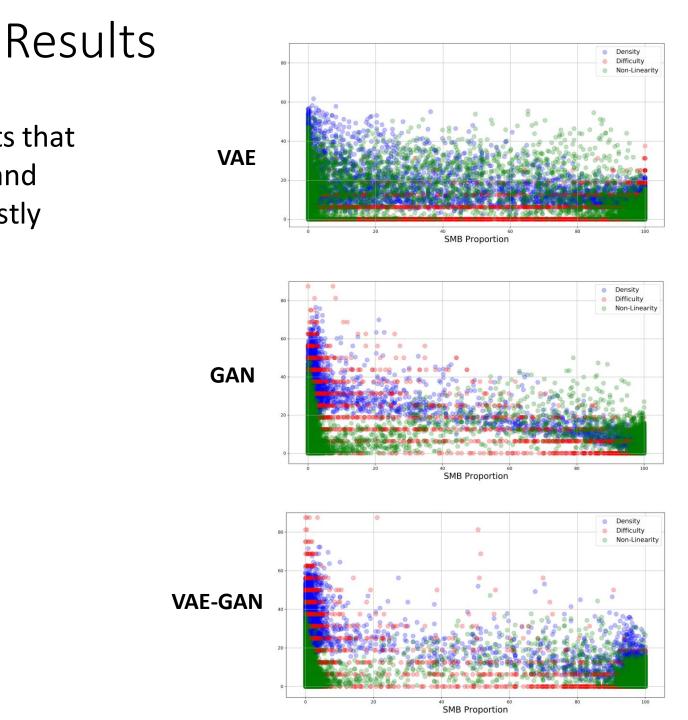
吾?

臺畫

8.0.0000

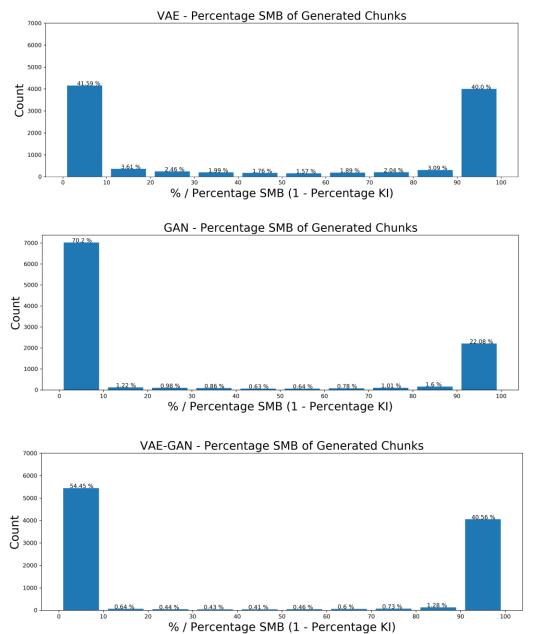
		0%
 Used four metrics for evaluation 		
Density		
Difficulty	Density	
 Non-Linearity 		
SMB Proportion		
 Compared generative performance of VAE with 	Difficulty	
that of GAN and VAE-GAN		
 How well models capture latent space spanning both games → computed above metrics for 10K random latent vectors 	Non-Linearity	
 Accuracy of evolving desired segments using CMA-ES → evolved 100 segments with target values of 0%, 25%, 50%, 75%, 100% for each metric 	SMB Proportion	

VAE does best at generating segments that are a mix of either game while GAN and VAE-GAN generate segment with mostly SMB or mostly KI elements

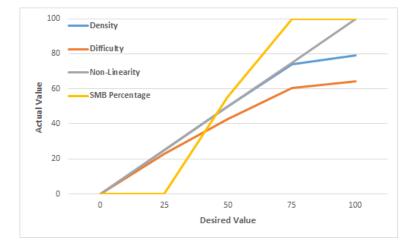


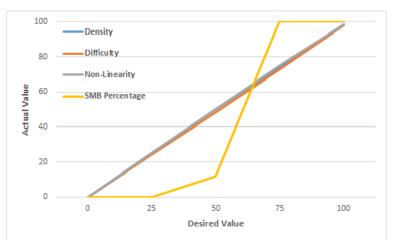
 VAE does best at generating segments that are a mix of either game while GAN and VAE-GAN generate segment with mostly SMB or mostly KI elements

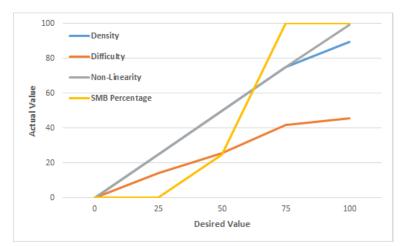
- VAE is better at capturing the latent space spanning both games as well as the space in between
 - 18% of VAE segments have elements of both games
 - 8% for GAN
 - 5% for VAE-GAN



• GAN does better than VAE only for 100% Density and 75% and 100% Difficulty





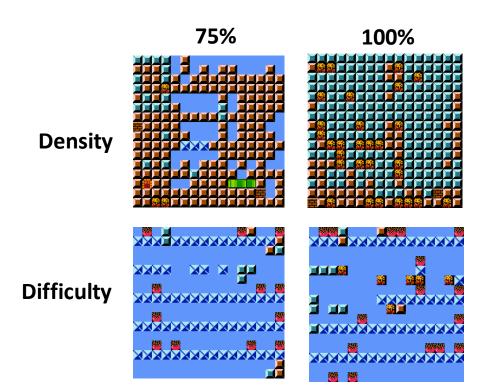


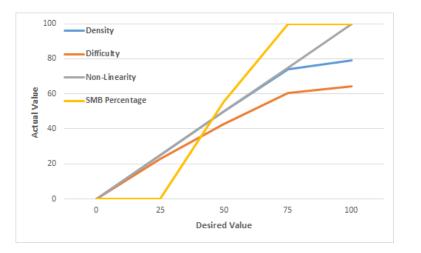
VAE

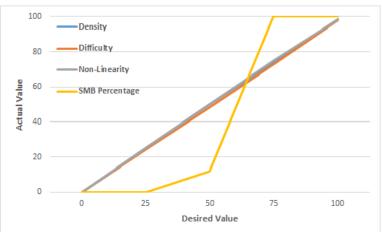
GAN

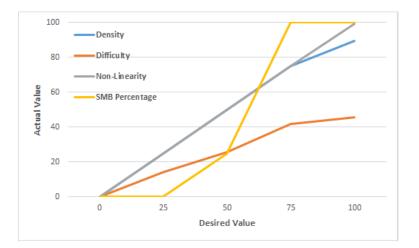
VAE-GAN

- GAN does better than VAE only for 100% Density and 75% and 100% Difficulty
- Ignore structures in training levels since actual segments would not be 100% solid nor have 16 enemies and hazards





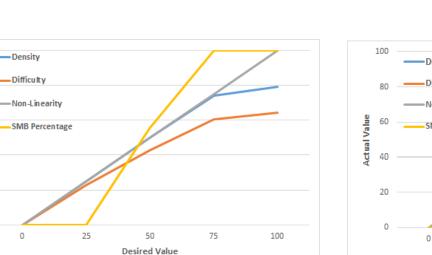


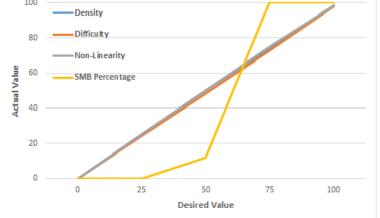


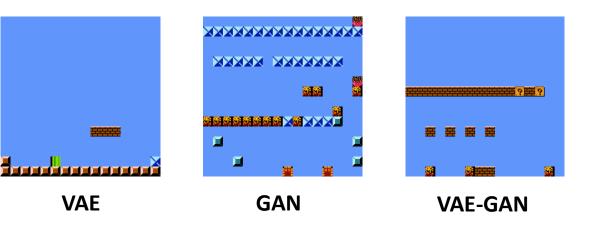
VAE

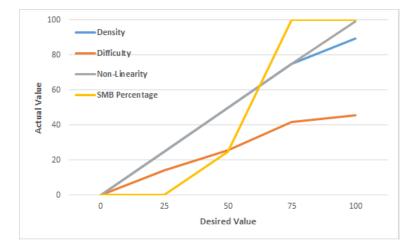
GAN

- No model does particularly well in blending desired SMB and KI proportions but VAE does well for the 50% case
- With similar training, VAE learns a latent space that is more representative while having more variation to enable better blending









VAE

100

Actual Value

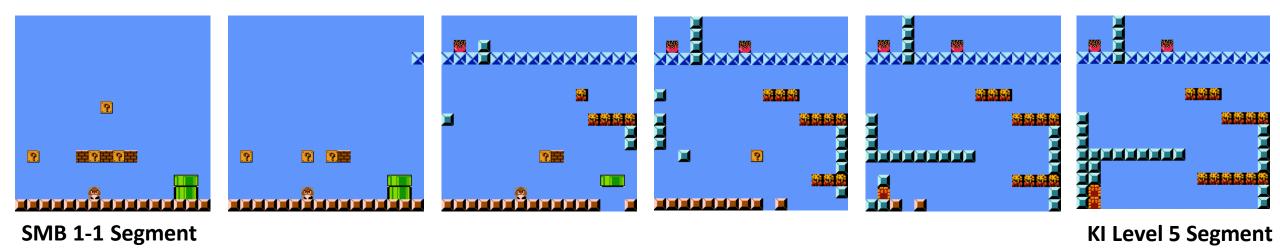
40

20

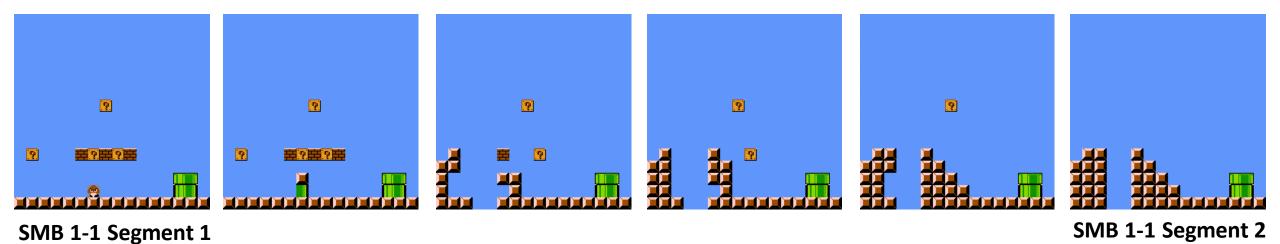
GAN

VAE-GAN

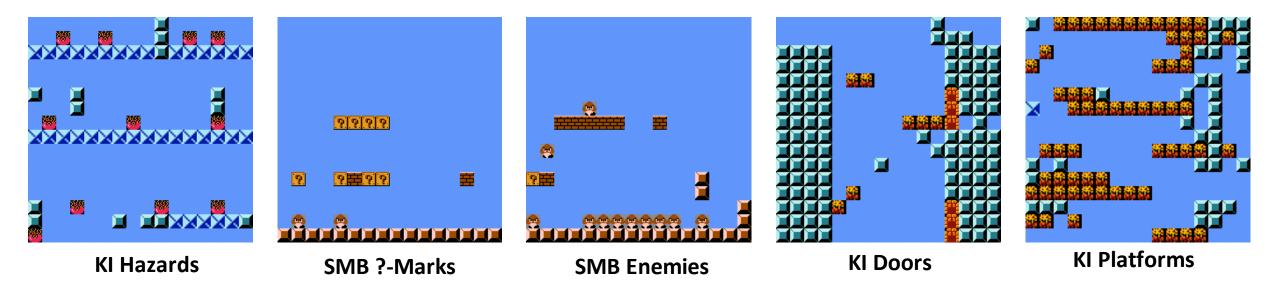
• Interpolation between games



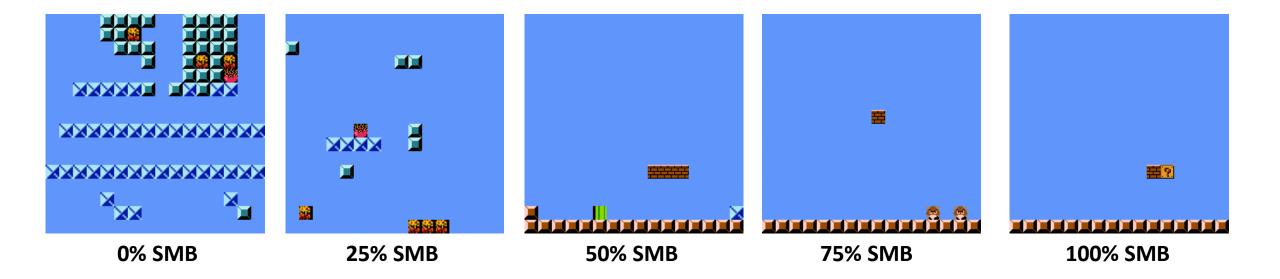
• Alternate connections between segments



• Generating segments satisfying specific properties



• Generating segments with desired proportions of different games



• Playability

- Playability
- Vector math in level design space

- Playability
- Vector math in level design space
- Co-Creative Level Design Tool

- Playability
- Vector math in level design space
- Co-Creative Level Design Tool
- Multiple Games and Genres

- Playability
- Vector math in level design space
- Co-Creative Level Design Tool
- Multiple Games and Genres

Contact

Anurag Sarkar Northeastern University sarkar.an@husky.neu.edu