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(Towards) Controllable Level Blending between 
Games using Variational Autoencoders

Still no playability!

Promising results and future directions!



Motivation

• Past work on training models on 
existing levels to generate new levels
• Sequence prediction using LSTMs
• Conceptual blending using 

graphical models

Guzdial and Riedl, 2016
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Motivation

• Past work on training models on 
existing levels to generate new levels
• Sequence prediction using LSTMs
• Conceptual blending using 

graphical models

• Gow and Corneli proposed generating 
new games by blending entire games

IDEA: PCGML techniques + Game Blending



Blending Levels using LSTMs

• Trained LSTMs on levels of Super Mario Bros.
and Kid Icarus

• Sampled from trained models to generate 
levels containing properties of both games

• Parametrized generator with weights to 
control approximate percentage of each game 
in blended level

(SMB=0.2, KI=0.8)

(SMB=0.8, KI=0.2)



Drawbacks

• Blended levels by taking turns between Super Mario Bros. and Kid Icarus

• Allowed control of proportion of each game in blended level but no control over 
more fine-grained tile-based properties



Solution: Variational Autoencoder (VAE)

• Enables more holistic blending of 
level properties by capturing 
latent space across both games

• Allows generation of segments 
satisfying specific properties

• More conducive to co-creative 
level design



Variational Autoencoder

• Autoencoders are neural nets that learn 
lower-dimensional data representations
• Encoder → input data to latent space
• Decoder → latent space to 

reconstructed data
Vanilla Autoencoder



Variational Autoencoder

• Autoencoders are neural nets that learn 
lower-dimensional data representations
• Encoder → input data to latent space
• Decoder → latent space to 

reconstructed data

• VAEs make latent space model a probability 
distribution (e.g. Gaussian)
• Allows learning continuous latent spaces
• Enables generative abilities similar to 

those of GANs

Vanilla Autoencoder

Variational Autoencoder



Motivation for VAE

• Past work in using autoencoders for Mario 
level generation
• Autoencoders for Level Generation, 

Repair and Recognition, Jain et al. (2016)
• Explainable PCGML via Design Patterns, 

Guzdial et al. (2018)
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Motivation for VAE

• Past work in using autoencoders for Mario 
level generation
• Autoencoders for Level Generation, 

Repair and Recognition, Jain et al. (2016)
• Explainable PCGML via Design Patterns, 

Guzdial et al. (2018)

• Evolving Mario Levels in the Latent Space of 
a DCGAN (i.e. MarioGAN), Volz et al. (2018)

• Use MarioGAN-based approach to capture 
latent space of 2 games instead of 1 Volz et al. (2018)



Why VAE over GAN?

• VAE architecture more conducive to 
co-creative level design
• Designers don’t have to directly 

use latent space vectors
• More explicit control in defining 

inputs to the system
• More useful to blend/interpolate 

between known segments rather 
than latent vectors

VAE Architecture

GAN Architecture



VAE vs GAN vs VAE-GAN

• Trained a GAN and a VAE-GAN in addition to 
the VAE to compare generative capabilities 
in a level blending context

• VAE-GAN is a hybrid generative model
• Combines VAE and GAN by collapsing 

VAE decoder into a GAN generator

VAE

GAN

VAE-GAN (Larsen et al. 2016)



Dataset and Training

• Trained on a level each from SMB (Level 1-1) and 
KI (Level 5) taken from the Video Game Level 
Corpus (VGLC)

• Each level is a 2D character array

• Each tile type was encoded using an integer and 
then with one-hot encoding for training



Dataset and Training

• To account for orientation, used 
16x16 sliding window

• 187 segments of SMB + 191 
segments of KI = 378 total 
segments

• Models learned to generate 
16x16 blended level segments

• VAE, GAN and VAE-GAN all 
trained using same number of 
segments and with similar 
training conditions



Generation

• Trained models generate 16x16 segments in combined SMB-KI latent level design space

• Generation involves feeding a latent vector into the VAE’s decoder which outputs a one-
hot encoded array which is converted to the 16x16 level segment

• Two generation methods
• Like GANs, use random latent vectors or evolve optimal vectors using search
• Unlike GANs, generate segments based on input segments



Evaluation

• Used four metrics for evaluation
• Density
• Difficulty
• Non-Linearity
• SMB Proportion
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Evaluation

• Used four metrics for evaluation
• Density
• Difficulty
• Non-Linearity
• SMB Proportion

• Compared generative performance of VAE with 
that of GAN and VAE-GAN
• How well models capture latent space 

spanning both games → computed above 
metrics for 10K random latent vectors

• Accuracy of evolving desired segments using 
CMA-ES → evolved 100 segments with 
target values of 0%, 25%, 50%, 75%, 100% 
for each metric

Density

Difficulty

Non-Linearity

SMB Proportion

0% 100%



Results

• VAE does best at generating segments that 
are a mix of either game while GAN and 
VAE-GAN generate segment with mostly 
SMB or mostly KI elements

VAE

VAE-GAN
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Results

• VAE does best at generating segments that 
are a mix of either game while GAN and 
VAE-GAN generate segment with mostly 
SMB or mostly KI elements

• VAE is better at capturing the latent space 
spanning both games as well as the space in 
between
• 18% of VAE segments have elements of 

both games
• 8% for GAN
• 5% for VAE-GAN



Results

• GAN does better than VAE only for 100% 
Density and 75% and 100% Difficulty

GANVAE VAE-GAN



Results

• GAN does better than VAE only for 100% 
Density and 75% and 100% Difficulty

• Ignore structures in training levels since 
actual segments would not be 100% solid 
nor have 16 enemies and hazards

GANVAE VAE-GAN

75% 100%

Density

Difficulty



Results

• No model does particularly well in blending 
desired SMB and KI proportions but VAE does 
well for the 50% case

• With similar training, VAE learns a latent space 
that is more representative while having more 
variation to enable better blending

GANVAE VAE-GAN

GANVAE VAE-GAN



Application in Co-Creative Design



Application in Co-Creative Design

• Interpolation between games

SMB 1-1 Segment KI Level 5 Segment



Application in Co-Creative Design

• Alternate connections between segments

SMB 1-1 Segment 1 SMB 1-1 Segment 2



Application in Co-Creative Design

• Generating segments satisfying specific properties

KI Hazards SMB ?-Marks SMB Enemies KI Doors KI Platforms



Application in Co-Creative Design

• Generating segments with desired proportions of different games

0% SMB 25% SMB 50% SMB 75% SMB 100% SMB
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