Using Rating Arrays to Estimate Score Distributions for Player-versus-Level Matchmaking

Anurag Sarkar and Seth Cooper

Northeastern University

Player Rating Systems

- Assign skill-based ratings to players
- Produce fair matches by pairing players of similar skill
- Score prediction
- ♦ E.g. Elo, Glicko, Glicko-2, Microsoft TrueSkill

PvL Matchmaking

- Applied in the PvL domain for difficulty balancing
- ♦ Each player and level assigned Glicko-2 ratings (init=1500)
 - ♦ Player rating → Skill
 - ♦ Level rating → Difficulty
- ♦ Compare ratings to compute player's chance of losing level
 i.e. level difficulty for that player
- ♦ Ratings updated based on if player wins or loses vs. level

PvL Matchmaking

Applied in the PvL domain for difficulty balancing

♦ Each player and level assigned Glicko-2 ratings (init=1500)

 $r_{pl} \leftarrow vs. \rightarrow r_{lv}$

- ♦ Player ratin
- ♦ Level rating

Requires fixing target score cutoff for each level to determine win/loss

Compare rati i.e. level diffict

 $\begin{array}{c|c} r_{pl} & r_{lv} \\ + d & - d \end{array}$

r_{pl}

r_{lv}

Ratings updated based on if player wins or loses vs. level

Single Level Rating

Array of Level Ratings

Single Level Rating

Array of Level Ratings

Single Rating	Rating Array
Matchmaking between players and levels	Matchmaking between players and (level, threshold) pairs

Single Level Rating

Array of Level Ratings

Single Rating	Rating Array
Matchmaking between players and levels	Matchmaking between players and (level, threshold) pairs
Fixed thresholds for all players	Dynamic thresholds based on player skill

Single Level Rating

2071

Single Rating	Rating Array
Matchmaking between players and levels	Matchmaking between players and (level, threshold) pairs
Fixed thresholds for all players	Dynamic thresholds based on player skill
Difficulty of completing a level	Difficulty of achieving specific scores on levels i.e. various stages of completion

Single Level Rating

Single Rating

→ 1700

Rating Array

certain score

2071

Matchmaking between players and levels	Matchmaking between players and (level, threshold) pairs	
Fixed thresholds for all players	Dynamic thresholds based on player skill	
Difficulty of completing a level	Difficulty of achieving specific scores on levels i.e. various stages of completion	
Predict single scores or win/loss	Predict probability that player will achieve a	

Enables modeling a CDF over possible scores

- Enables modeling a CDF over possible scores
- Allows predicting likelihood of player achieving new high score

- Enables modeling a CDF over possible scores
- Allows predicting likelihood of player achieving new high score
- Useful in human computation games (HCGs)
 where high scores are new/better solutions

- Enables modeling a CDF over possible scores
- Allows predicting likelihood of player achieving new high score
- Useful in human computation games (HCGs)
 where high scores are new/better solutions
- ♦ Rating arrays + ratings-based matchmaking → identify players able to set new high scores while also performing DDA

Method: Initialization

- ♦ Glicko-2 rating system
- ♦ Each player has a single rating (init=1500)
- ♦ Each level has an array of n ratings (n=10)
- ♦ Array indices represent thresholds (0% to 90%)
- Array values represent corresponding ratings
- ♦ Initialized rating array centered around 1500 using a smoothly increasing curve given by:

1500 – 260 ln
$$(\frac{1 - \text{threshold}}{\text{threshold}})$$

♦ For a PvL pairing, score CDF maps score to probability that player will not score higher on that level

Example Player CDF

♦ For a PvL pairing, score CDF maps score to probability that player will not score higher on that level

♦ For a given player and threshold x, CDF of their score s on a level:

$$F_s(x) = P(s \le x); P(s \le 100) = 1$$

Example Player CDF

♦ For a PvL pairing, score CDF maps score to probability that player will not score higher on that level

♦ For a given player and threshold x, CDF of their score s on a level:

$$F_s(x) = P(s \le x); P(s \le 100) = 1$$

 \Leftrightarrow Given player rating and level rating array, construct CDF with probabilities that player will not pass a threshold τ^t : $F_s^t = P(s \le \tau^t)$

$$F_s^0 = P(s \le 0\%)$$

$$F_s^1 = P(s \le 10\%)$$

$$F_s^2 = P(s \le 20\%)$$

 $F_s^9 = P(s \le 90\%)$

 For a PvL pairing, score CDF maps score to probability that player will not score higher on that level

♦ For a given player and threshold x, CDF of their score s on a level:

$$F_s(x) = P(s \le x); P(s \le 100) = 1$$

 \Leftrightarrow Given player rating and level rating array, construct CDF with probabilities that player will not pass a threshold τ^t : $F_s^t = P(s \le \tau^t)$

 \diamond Construct $F_s(x)$ by linear interpolation between the two thresholds surrounding x

$$F_s^0 = P(s \le 0\%)$$

$$F_s^{\ 1} = P(s \le 10\%)$$

$$F_s^2 = P(s \le 20\%)$$

• • •

$$F_s^9 = P(s \le 90\%)$$

Method: Rating Updates

♦ After each PvL match, update ratings using Glicko-2 as if player simultaneously played vs. all thresholds

- If player scores s
 - \diamond Loses against all thresholds $\tau^t > s$
 - \diamond Wins against all thresholds $\tau^t \leq s$

VS.

Method: Rating Updates

♦ After each PvL match, update ratings using Glicko-2 as if player simultaneously played vs. all thresholds

VS.

- If player scores s
 - \diamond Loses against all thresholds $\tau^t > s$
 - \diamond Wins against all thresholds $\tau^t \leq s$
- Updates could lead to non-strictly increasing threshold ratings

VS.

	0%	\rightarrow	305
	10%	\rightarrow	929
Ę.	20%	\rightarrow	1140
6	30%	\rightarrow	1280
4	40%	\rightarrow	1395
	50%	\rightarrow	1500
	60%	\rightarrow	1605
Ų.	70%	\rightarrow	1720
	80%	\rightarrow	1860
1	90%	\rightarrow	2071

- ♦ Post-processing:
 - \diamond If rating for $\tau^t \ge$ rating for $\tau^{t+1} \rightarrow$ set rating for $\tau^t =$ (rating for τ^{t+1}) 1
 - \diamond If rating for $\tau^{t+1} <$ rating for $\tau^t \rightarrow$ set rating for $\tau^{t+1} =$ (rating for τ^t) + 1

Datasets

♦ Paradox

- ♦ Synthetic data using Elo ratings
- Match data with instances of players playing levels treated as PvL matches

- Each entry consists of
 - ♦ Timestamp
 - ♦ Player and Level IDs
 - Player and Level Scores
 - ♦ Result

PlayerID	LevelName	Time	LevelStart	LevelMax	PlayerCur	PlayerMax	Result
p1	gen_tree_ma	1544722425148	84	107	107	107	win
p2	pret60_25	1544722434565	139	160	157	157	loss
p2	medium	1544722465193	735	953	903	903	loss
p3	par8-3-c	1544722465649	264	298	291	291	loss
p4	flat50-1	1544722472911	417	545	509	518	loss
p5	dubois21	1544722490918	149	168	165	165	loss
p2	hole6	1544722500092	70	133	132	132	loss
p2	gen_tree_la	1544722516825	198	242	216	216	loss
p5	gen_rsets_s1a	1544722539585	40	54	54	54	win
p4	ii8a1	1544722545307	151	186	183	184	loss
p2	gen_rsets_s2a	1544722545492	36	54	51	51	loss

- ♦ 2D human computation puzzle game
- Each level is a boolean constraint satisfaction problem
- Players assign values to variables to solve constraints
- ♦ Score: percentage of satisfied constraints
- ♦ Target score reached → Level Completed

Paradox

- ♦ 100 players recruited using Amazon Mechanical Turk, final data set had 98 players and 691 matches
 - ♦ 9 tutorial levels (static order)
 - ♦ 50 challenge levels (random order)
 - ♦ Players had to play at least 5 challenge levels

Synthetic Elo Data

♦ 100 generated players and 50 generated levels with uniformly random ratings (900 – 2100)

♦ Simulated 1000 matches by randomly selecting a player and a level

♦ Player score vs. a level was the Elo expected score based on both ratings

Evaluations

Accuracy of the CDF in predicting probabilities of events

Accuracy of the CDF in predicting player scores

Using the CDF to serve players with levels for setting new high scores

Evaluations

- ♦ To evaluate both data sets, performed ratings playback to update ratings for players and level arrays
- Rating updates and CDF computations using matches up to current point of playback (training data)
- Predictions made on all future matches (test data)
- Example player and level score CDFs

Example Player CDF

Example Level CDF

♦ Count how often scores predicted to happen between 0-10%, 10-20% ... 90-100% of the time, actually happened within that range

♦ Count how often scores predicted to happen between 0-10%, 10-20% ... 90-100% of the time, actually happened within that range

♦ For each match, used CDF to compute probability of score falling in various ranges

♦ Count how often scores predicted to happen between 0-10%, 10-20% ... 90-100% of the time, actually happened within that range

♦ For each match, used CDF to compute probability of score falling in various ranges

Compared center of predicted probabilities in each bin with observed probabilities in that bin

Paradox (
$$\rho = 0.980, p < 0.001$$
)

Synthetic ($\rho = 0.995, p < 0.001$)

♦ Accuracy of player scores predicted using CDF compared to using a single Glicko-2 rating

- ♦ Accuracy of player scores predicted using CDF compared to using a single Glicko-2 rating
- ♦ For both data sets
 - \diamond RMSD of actual player score vs expected score predicted by CDF (Err_{cdf})
 - \diamond RMSD of actual player score vs expected score predicted by Glicko-2 (Err_{gl2})
 - \Leftrightarrow RMSD of CDF and Glicko-2 predictions ($Diff_{cdf-gl2}$)

- ♦ Accuracy of player scores predicted using CDF compared to using a single Glicko-2 rating
- For both data sets
 - \diamond RMSD of actual player score vs expected score predicted by CDF (Err_{cdf})
 - \diamond RMSD of actual player score vs expected score predicted by Glicko-2 (Err_{gl2})
 - \Leftrightarrow RMSD of CDF and Glicko-2 predictions (*Diff*_{cdf-gl2})

$$E(s) = \int_0^1 (1 - Fs(x)) dx$$

- ♦ Accuracy of player scores predicted using CDF compared to using a single Glicko-2 rating
- For both data sets
 - \diamond RMSD of actual player score vs expected score predicted by CDF (Err_{cdf})
 - \diamond RMSD of actual player score vs expected score predicted by Glicko-2 (Err_{gl2})
 - \Leftrightarrow RMSD of CDF and Glicko-2 predictions (*Diff*_{cdf-gl2})

$$E(s) = \int_0^1 (1 - Fs(x)) dx$$

	Err _{cdf}	$\mathrm{Err}_{\mathrm{gl2}}$	$\mathbf{Diff}_{\mathrm{cdf-gl2}}$
Paradox	0.407	0.401	0.058
Elo	0.115	0.126	0.066

♦ Serve levels with aim of setting high scores while performing dynamic difficulty adjustment (DDA)

 Serve levels with aim of setting high scores while performing dynamic difficulty adjustment (DDA)

♦ Useful in HCGs → high scores may imply new/better solutions

Foldit

- ♦ Serve levels with aim of setting high scores while performing dynamic difficulty adjustment (DDA)
- ♦ Useful in HCGs → high scores may imply new/better solutions
- \Rightarrow Previously DDA in *Paradox* done using player's desired loss rate $DLR = \frac{1}{1 + e^{\alpha(\beta x)}}$

- ♦ Serve levels with aim of setting high scores while performing dynamic difficulty adjustment (DDA)
- ♦ Useful in HCGs → high scores may imply new/better solutions
- * Previously DDA in *Paradox* done using player's desired loss rate $DLR = \frac{1}{1 + e^{\alpha(\beta x)}}$
- ♦ Computed using player's Glicko-2 rating
 - ♦ DLR goes up as rating goes up
 - Player is matched with harder levels

- \diamond s_{exp} \rightarrow expected score predicted by the CDF
- \diamond s_{dlr} \rightarrow DLR score
- \diamond s_{max} \rightarrow max score seen on a level

- \diamond s_{exp} \rightarrow expected score predicted by the CDF
- \diamond s_{dlr} \rightarrow DLR score
- \Leftrightarrow $s_{max} \rightarrow max$ score seen on a level

- ♦ Two approaches to selecting level to serve player
 - \Leftrightarrow If $s_{exp} > s_{max} \rightarrow$ looking only for increased high scores
 - \diamond If both s_{exp} and $s_{dlr} > s_{max} \rightarrow$ looking for increased high scores while doing DDA

 \diamond Trade-off between increased accuracy using only S_{exp} and ability to perform DDA using S_{dlr}

 \diamond Trade-off between increased accuracy using only S_{exp} and ability to perform DDA using S_{dlr}

- \diamond Only $S_{exp} \rightarrow$ ignores desired difficulty curve when serving levels
- \diamond Only $S_{dlr} \rightarrow$ ignores player's ability to set new high scores

 \diamond Trade-off between increased accuracy using only S_{exp} and ability to perform DDA using S_{dlr}

- \diamond Only $S_{exp} \rightarrow$ ignores desired difficulty curve when serving levels
- \diamond Only $S_{dlr} \rightarrow$ ignores player's ability to set new high scores

♦ Combining both → serving levels where players can improve high scores while also doing DDA

Conclusion and Future Work

- ♦ Introduced level rating arrays for improved PvL score prediction and matchmaking
- Enables deriving score CDFs for both players and levels
- ♦ Helps decide if a level should be served to a player to try to set a new high score + DDA

Conclusion and Future Work

- ♦ Introduced level rating arrays for improved PvL score prediction and matchmaking
- Enables deriving score CDFs for both players and levels
- ♦ Helps decide if a level should be served to a player to try to set a new high score + DDA
- ♦ For future work, use rating arrays to do live matchmaking
- Improve prediction metrics by considering other difficulty curves
- Investigate application of rating arrays in educational games

Conclusion and Future Work

- ♦ Introduced level rating arrays for improved PvL score prediction and matchmaking
- Enables deriving score CDFs for both players and levels
- ♦ Helps decide if a level should be served to a player to try to set a new high score + DDA
- ♦ For future work, use rating arrays to do live matchmaking
- Improve prediction metrics by considering other difficulty curves
- ♦ Investigate application of rating arrays in educational games

Contact

Anurag Sarkar Northeastern University sarkar.an@husky.neu.edu

Acknowledgments

This work was supported by the **National Science Foundation** under grant no. 1652537