Using Rating Arrays to Estimate Score Distributions for Player-versus-Level Matchmaking

Anurag Sarkar and Seth Cooper
Northeastern University

Player Rating Systems

\diamond Assign skill-based ratings to players
\diamond Produce fair matches by pairing players of similar skill
\diamond Score prediction

\diamond E.g. Elo, Glicko, Glicko-2, Microsoft TrueSkill

PvL Matchmaking

\diamond Applied in the PvL domain for difficulty balancing
\diamond Each player and level assigned Glicko-2 ratings (init=1500)
\diamond Player rating \rightarrow Skill
\diamond Level rating \rightarrow Difficulty
\diamond Compare ratings to compute player's chance of losing level i.e. level difficulty for that player

\diamond Ratings updated based on if player wins or loses vs. level

PvL Matchmaking

\diamond Applied in the PvL domain for difficulty balancing
\diamond Each player and level assigned Glicko-2 ratings (init=1500)

\diamond Player ratin
\diamond Level ratin!
\diamond Compare rati i.e. level diffic

Requires fixing target score cutoff for each level to determine win/loss
\diamond Ratings updated based on if player wins or loses vs. level

Rating Arrays

Single Level Rating

Array of Level Ratings

Rating Arrays

Single Level Rating

Single Rating

Rating Array

Matchmaking between players and (level, threshold) pairs

Rating Arrays

Single Level Rating

Single Rating
Matchmaking between players and levels

Fixed thresholds for all players

Rating Array

Matchmaking between players and (level, threshold) pairs

Dynamic thresholds based on player skill

Rating Arrays

Single Level Rating

Single Rating
Matchmaking between players and levels

Fixed thresholds for all players
Difficulty of completing a level

Array of Level Ratings

Rating Arrays

Single Level Rating

Array of Level Ratings

Single Rating

Rating Array

Matchmaking between players and (level, threshold) pairs

Fixed thresholds for all players
Difficulty of completing a level

Dynamic thresholds based on player skill
Difficulty of achieving specific scores on levels i.e. various stages of completion

Predict single scores or win/loss
Predict probability that player will achieve a certain score

Rating Arrays

\diamond Enables modeling a CDF over possible scores

Rating Arrays

\diamond Enables modeling a CDF over possible scores
\diamond Allows predicting likelihood of player achieving new high score

Rating Arrays

\diamond Enables modeling a CDF over possible scores
\diamond Allows predicting likelihood of player achieving new high score
\diamond Useful in human computation games (HCGs) where high scores are new/better solutions

Rating Arrays

\diamond Enables modeling a CDF over possible scores
\diamond Allows predicting likelihood of player achieving new high score

Method: Initialization

\diamond Glicko-2 rating system

- Each player has a single rating (init=1500)
\diamond Each level has an array of n ratings $(\mathrm{n}=10)$
\diamond Array indices represent thresholds (0\% to 90\%)
\diamond Array values represent corresponding ratings
\diamond Initialized rating array centered around 1500 using a smoothly increasing curve given by:

$$
1500-260 \ln \left(\frac{1-\text { threshold }}{\text { threshold }}\right)
$$

Method: CDF Computation

\diamond For a PvL pairing, score CDF maps score to probability that player will not score higher on that level

Example Player CDF

Method: CDF Computation

\diamond For a PvL pairing, score CDF maps score to probability that player will not score higher on that level
\diamond For a given player and threshold x, CDF of their score s on a level:

$$
F_{s}(x)=P(s \leq x) ; P(s \leq 100)=1
$$

Example Player CDF

Method: CDF Computation

\diamond For a PvL pairing, score CDF maps score to probability that player will not score higher on that level

Method: CDF Computation

\diamond For a PvL pairing, score CDF maps score to probability that player will not score higher on that level

\diamond Construct $F_{s}(x)$ by linear interpolation between the two thresholds surrounding x

Method: Rating Updates

\diamond After each PvL match, update ratings using Glicko-2 as if player simultaneously played vs. all thresholds

VS.

\diamond If player scores s
\diamond Loses against all thresholds $\tau^{t}>\mathrm{s}$
\diamond Wins against all thresholds $\tau^{t} \leq \mathrm{s}$

vs. $\left\{\begin{array}{lll}0 \% & & 305 \\ 10 \% & \rightarrow & 929 \\ 20 \% & \rightarrow & 1140 \\ 30 \% & \rightarrow & 1280 \\ 40 \% & \rightarrow & 1395 \\ 50 \% & \rightarrow & 1500 \\ 60 \% & \rightarrow & 1605 \\ 70 \% & \rightarrow & 1720 \\ 80 \% & \rightarrow & 1860 \\ 90 \% & \rightarrow & 2071\end{array}\right\}$

Method: Rating Updates

\diamond After each PvL match, update ratings using Glicko-2 as if player simultaneously played vs. all thresholds

VS.

\diamond If player scores s
\diamond Loses against all thresholds $\tau^{t}>\mathrm{s}$
\diamond Wins against all thresholds $\tau^{t} \leq \mathrm{s}$
\diamond Updates could lead to non-strictly increasing threshold ratings
\diamond Post-processing:
\diamond If rating for $\tau^{t}>=$ rating for $\tau^{t+1} \rightarrow$ set rating for $\tau^{t}=\left(\right.$ rating for $\left.\tau^{t+1}\right)-1$
90\%

\rightarrow	305
\rightarrow	929
\rightarrow	1140
\rightarrow	1280
\rightarrow	1395
\rightarrow	1500
\rightarrow	1605
\rightarrow	1720
\rightarrow	1860
\rightarrow	2071

Datasets

\rightarrow Paradox
\diamond Synthetic data using Elo ratings
\diamond Match data with instances of players playing levels treated as PvL matches
\diamond Each entry consists of

PlayerID	LevelName	Time	LevelStart	LevelMax	PlayerCur	PlayerMax Result
p1	gen_tree_ma	1544722425148	84	107	107	107 win
p2	pret60_25	1544722434565	139	160	157	157 loss
p2	medium	1544722465193	735	953	903	903 loss
p3	par8-3-c	1544722465649	264	298	291	291 loss
p4	flat50-1	1544722472911	417	545	509	518 loss
p5	dubois21	1544722490918	149	168	165	165 loss
p2	hole6	1544722500092	70	133	132	132 loss
p2	gen_tree_la	1544722516825	198	242	216	216 loss
p5	gen_rsets_s1a	1544722539585	40	54	54	54 win
p4	ii8a1	1544722545307	151	186	183	184 loss
p2	gen_rsets_s2a	1544722545492	36	54	51	51 loss

\diamond Timestamp
\diamond Player and Level IDs
\diamond Player and Level Scores
\diamond Result

Paradox

\diamond 2D human computation puzzle game
\diamond Each level is a boolean constraint satisfaction problem
\diamond Players assign values to variables to solve constraints
\diamond Score: percentage of satisfied constraints
\diamond Target score reached \rightarrow Level Completed

Paradox

$\diamond 100$ players recruited using Amazon Mechanical Turk, final data set had 98 players and 691 matches
$\diamond 9$ tutorial levels (static order)
$\diamond 50$ challenge levels (random order)
\diamond Players had to play at least 5 challenge levels

amazon mechanicalturk"' Artificial Artificial Intelligence

Synthetic Elo Data

$\diamond 100$ generated players and 50 generated levels with uniformly random ratings (900-2100)
\diamond Simulated 1000 matches by randomly selecting a player and a level
\diamond Player score vs. a level was the Elo expected score based on both ratings

Evaluations

\diamond Accuracy of the CDF in predicting probabilities of events
\diamond Accuracy of the CDF in predicting player scores
\diamond Using the CDF to serve players with levels for setting new high scores

Evaluations

\diamond To evaluate both data sets, performed ratings playback to update ratings for players and level arrays
\diamond Rating updates and CDF computations using matches up to current point of playback (training data)

Example Player CDF

Example Level CDF

CDF Accuracy

\diamond Count how often scores predicted to happen between 0-10\%, 10-20\% ... 90-100\% of the time, actually happened within that range

CDF Accuracy

\diamond Count how often scores predicted to happen between 0-10\%, 10-20\% ... 90-100\% of the time, actually happened within that range
\diamond For each match, used CDF to compute probability of score falling in various ranges

CDF Accuracy

\diamond Count how often scores predicted to happen between 0-10\%, 10-20\% ... 90-100\% of the time, actually happened within that range
\diamond For each match, used CDF to compute probability of score falling in various ranges
\diamond Compared center of predicted probabilities in each bin with observed probabilities in that bin

CDF Accuracy

Paradox ($\rho=0.980, p<0.001$)

Synthetic ($\rho=0.995, p<0.001$)

Score Estimation

\diamond Accuracy of player scores predicted using CDF compared to using a single Glicko-2 rating

Score Estimation

\diamond Accuracy of player scores predicted using CDF compared to using a single Glicko-2 rating
Δ For both data sets
\diamond RMSD of actual player score vs expected score predicted by CDF (Errcaf)
\diamond RMSD of actual player score vs expected score predicted by Glicko-2 (Err $r_{g l}$)
\diamond RMSD of CDF and Glicko-2 predictions (Diff cdfyg ${ }_{\text {I }}$)

Score Estimation

\diamond Accuracy of player scores predicted using CDF compared to using a single Glicko-2 rating
\diamond For both data sets
\diamond RMSD of actual player score vs expected score predicted by CDF (Errcaf)
\diamond RMSD of actual player score vs expected score predicted by Glicko-2 (Err ${ }_{g l}$)
\diamond RMSD of CDF and Glicko-2 predictions (Diff dffgle)
$\diamond E(s)=\int_{0}^{1}(1-F s(x)) d x$

Score Estimation

\diamond Accuracy of player scores predicted using CDF compared to using a single Glicko-2 rating
\diamond For both data sets
\diamond RMSD of actual player score vs expected score predicted by CDF (Errcaf)
\diamond RMSD of actual player score vs expected score predicted by Glicko-2 (Err $_{g l 2}$)
\diamond RMSD of CDF and Glicko-2 predictions (Diff dffgle)
$\diamond E(s)=\int_{0}^{1}(1-F s(x)) d x$

	Err $_{\text {cdf }}$	Err $_{\mathrm{gl2}}$	Diff $_{\text {cdffgl2 }}$
Paradox	0.407	0.401	0.058
Elo	0.115	0.126	0.066

High Scores

\diamond Serve levels with aim of setting high scores while performing dynamic difficulty adjustment (DDA)

High Scores

\diamond Serve levels with aim of setting high scores while performing dynamic difficulty adjustment (DDA)
\diamond Useful in HCGs \rightarrow high scores may imply new/better solutions

High Scores

\diamond Serve levels with aim of setting high scores while performing dynamic difficulty adjustment (DDA)
\diamond Useful in HCGs \rightarrow high scores may imply new/better solutions
\diamond Previously DDA in Paradox done using player's desired loss rate $D L R=\frac{1}{1+\mathrm{e}^{\alpha(\beta-x)}}$

High Scores

\diamond Serve levels with aim of setting high scores while performing dynamic difficulty adjustment (DDA)
\diamond Useful in HCGs \rightarrow high scores may imply new/better solutions
\diamond Previously DDA in Paradox done using player's desired loss rate $D L R=\frac{1}{1+\mathrm{e}^{\alpha(\beta-x)}}$
\diamond Computed using player's Glicko-2 rating
\diamond DLR goes up as rating goes up
\diamond Player is matched with harder levels

High Scores

$\diamond \mathrm{S}_{\mathrm{exp}} \rightarrow$ expected score predicted by the CDF $\diamond \mathrm{s}_{\mathrm{dlr}} \rightarrow$ DLR score
$\diamond \mathrm{S}_{\max } \rightarrow \max$ score seen on a level

$\rightarrow \mathrm{s}_{\mathrm{exp}}$

$\rightarrow \mathrm{s}_{\mathrm{dlr}}$

High Scores

$\diamond \mathrm{S}_{\mathrm{exp}} \rightarrow$ expected score predicted by the CDF
$\diamond \mathrm{s}_{\mathrm{dlr}} \rightarrow$ DLR score
$\diamond \mathrm{s}_{\max } \rightarrow \max$ score seen on a level

$\rightarrow \mathrm{s}_{\mathrm{exp}}$
\diamond Two approaches to selecting level to serve player \diamond If $\mathrm{s}_{\text {exp }}>\mathrm{s}_{\max } \rightarrow$ looking only for increased high scores
Δ If both $\mathrm{s}_{\mathrm{exp}}$ and $\mathrm{s}_{\mathrm{dlr}}>\mathrm{s}_{\max } \rightarrow$ looking for increased high scores while doing DDA

$\rightarrow \mathrm{s}_{\mathrm{dlr}}$

High Scores

\diamond Trade-off between increased accuracy using only $\mathbf{S}_{\mathbf{e x p}}$ and ability to perform DDA using $\mathbf{S}_{\mathbf{d l r}}$

High Scores

\diamond Trade-off between increased accuracy using only $\mathbf{S}_{\mathbf{e x p}}$ and ability to perform DDA using $\mathbf{S}_{\mathbf{d l r}}$
\diamond Only $\mathbf{S}_{\text {exp }} \rightarrow$ ignores desired difficulty curve when serving levels
\diamond Only $\mathbf{S}_{\mathrm{dlr}} \rightarrow$ ignores player's ability to set new high scores

High Scores

\diamond Trade-off between increased accuracy using only $\mathbf{S}_{\mathbf{e x p}}$ and ability to perform DDA using $\mathbf{S}_{\mathbf{d l r}}$
\diamond Only $\mathbf{S}_{\text {exp }} \rightarrow$ ignores desired difficulty curve when serving levels
\diamond Only $\mathbf{S}_{\mathrm{dlr}} \rightarrow$ ignores player's ability to set new high scores
\diamond Combining both \rightarrow serving levels where players can improve high scores while also doing DDA

Conclusion and Future Work

\diamond Introduced level rating arrays for improved PvL score prediction and matchmaking
\diamond Enables deriving score CDFs for both players and levels
\diamond Helps decide if a level should be served to a player to try to set a new high score + DDA

Conclusion and Future Work

\diamond Introduced level rating arrays for improved PvL score prediction and matchmaking
\diamond Enables deriving score CDFs for both players and levels
\diamond Helps decide if a level should be served to a player to try to set a new high score + DDA
\diamond For future work, use rating arrays to do live matchmaking
\diamond Improve prediction metrics by considering other difficulty curves
\diamond Investigate application of rating arrays in educational games

Conclusion and Future Work

\diamond Introduced level rating arrays for improved PvL score prediction and matchmaking
\diamond Enables deriving score CDFs for both players and levels
\diamond Helps decide if a level should be served to a player to try to set a new high score + DDA
\diamond For future work, use rating arrays to do live matchmaking
\diamond Improve prediction metrics by considering other difficulty curves
\diamond Investigate application of rating arrays in educational games

Contact
Anurag Sarkar
Northeastern University
sarkar.an@husky.neu.edu

Acknowledgments
This work was supported by the National Science
Foundation under grant no. 1652537

