
Conditional Level Generation and 
Game Blending

Anurag Sarkar
Northeastern University

Zhihan Yang
Carleton College

Seth Cooper
Northeastern University



Motivation

Sarkar, Yang and Cooper, 2019

Sarkar and Cooper, 2020

Snodgrass and Sarkar, 2020 Sarkar, Summerville, Snodgrass, 
Bentley, Osborn, 2020

• Variational Autoencoders (VAEs) have been 
used for generating and blending game levels



Motivation

Sarkar, Yang and Cooper, 2019

Sarkar and Cooper, 2020

Snodgrass and Sarkar, 2020 Sarkar, Summerville, Snodgrass, 
Bentley, Osborn, 2020

• Variational Autoencoders (VAEs) have been 
used for generating and blending game levels

• Controllability via latent vector evolution
• Define objective function
• Run search in latent space to evolve 

desired vectors



Motivation

Sarkar, Yang and Cooper, 2019

Sarkar and Cooper, 2020

Snodgrass and Sarkar, 2020 Sarkar, Summerville, Snodgrass, 
Bentley, Osborn, 2020

• Variational Autoencoders (VAEs) have been 
used for generating and blending game levels

• Controllability via latent vector evolution
• Define objective function
• Run search in latent space to evolve 

desired vectors
--- post-training process independent of 
the model
--- sometimes limited controllability



Motivation
• Variational Autoencoders (VAEs) have been 

used for generating and blending game levels

• Controllability via latent vector evolution
• Define objective function
• Run search in latent space to evolve 

desired vectors
--- post-training process independent of 
the model
--- sometimes limited controllability

• Conditional VAEs enable controllability as 
part of the model itself
• Train on labeled data
• Generation conditioned on input labels
• Various design affordances

Sarkar, Yang and Cooper, 2019

Sarkar and Cooper, 2020

Snodgrass and Sarkar, 2020 Sarkar, Summerville, Snodgrass, 
Bentley, Osborn, 2020



Variational Autoencoder (VAE)

source: jdykeman.github.io/ml/2016/12/21/cvae.html

• Autoencoders are neural nets that learn lower-dimensional data representations
• Encoder → input data to latent space
• Decoder → latent space to reconstructed data

• VAEs make latent space model a probability distribution (e.g. Gaussian)
• Allows learning continuous latent spaces
• Enables generative abilities similar to those of GANs (sampling, interpolation)



Variational Autoencoder (VAE)
• Autoencoders are neural nets that learn lower-dimensional data representations

• Encoder → input data to latent space
• Decoder → latent space to reconstructed data

• VAEs make latent space model a probability distribution (e.g. Gaussian)
• Allows learning continuous latent spaces
• Enables generative abilities similar to those of GANs (sampling, interpolation)

source: jdykeman.github.io/ml/2016/12/21/cvae.html



Conditional VAE (CVAE)
• CVAEs associate input data with labels during training
• Encoder uses label to learn latent encodings of inputs
• Decoder uses same label to learn how to reconstruct input from latent encoding
• Same latent vector can produce different outputs by varying label

source: jdykeman.github.io/ml/2016/12/21/cvae.html



Conditional VAE (CVAE)

• CVAE could inform level design/generation by:
• Enabling controllable generation by using labels to produce desired content
• Generate variations of existing content by decoding it using different labels

source: jdykeman.github.io/ml/2016/12/21/cvae.html



Approach
• Games:

• Three conditioning approaches:
• Game elements
• Mario design patterns
• Game blending

• For all cases:
• 16x16 segments
• Binary-encoded vectors as labels
• 3 latent dimensions per model (32, 64, 128)

Super Mario Bros. Kid Icarus Mega Man



Game Elements

• Unique set of conditioning labels for each game

• Label length → number of different elements
• 5 for SMB/MM, 4 for KI
• Each unique label corresponds to a unique 

combination of elements

• Trained separate CVAE for each game

• Labels for training segments determined by checking for 
the relevant game elements within that segment
• Present → set bit to 1
• Absent → set bit to 0

< Enemy, Pipe, Coin, Breakable, ?-Mark >

< Hazard, Door, Moving, Stationary >

< Hazard, Door, Ladder, Platform, Collectible >



Game Elements

• Conditioning Accuracy Evaluation:
• For each game, sampled 1000 latent vectors

• Conditioned generation of each using each possible label (32 for SMB/MM, 16 for KI)

• Compared elements in generated segments with labels used for generation

• Exact → all elements present

• None → none of the elements present



Game Elements

Super Mario Bros. Kid Icarus Mega Man



Game Elements



Design Patterns

• 10 SMB design patterns adapted from 
Dahlskog and Togelius, “Patterns and 
Procedural Content Generation: Revisiting 
Mario in World 1 Level 1”, 2012

• Binary labels of length 10

• Used levels from
• Super Mario Bros.
• Super Mario Bros II: The Lost Levels

• Labels assigned manually based on visual 
inspection

Mario Design Patterns



Design Patterns

• More challenging to evaluate
• Unlike game elements, couldn’t 

automatically check for design 
patterns

• Couldn’t automatically determine 
label matches

• No success in training a classifier due 
to low amount of data relative to 
number of unique labels

• Currently, restricted to visual 
inspection

Mario Design Patterns



Design Patterns



Game Blending

• Trained on segments from all 3 games taken together

• 3-element labels indicating which game a segment 
belonged to

• Blending by conditioning generation using blended 
labels
• <110> → SMB + KI
• <011> → KI + MM
• <101> → SMB + MM

Super Mario Bros.: <100>

Kid Icarus: <010>

Mega Man: <001>



Game Blending
• Label accuracy evaluation issues:

• Hard to automatically detect blending
• No ground truth for blended levels



Game Blending
• Label accuracy evaluation issues:

• Hard to automatically detect blending
• No ground truth for blended levels

• Proxy evaluation:
• Train a classifier on original segments to predict which game they belong to
• Test to see how predictions on CVAE-generated segments change with different 

conditioning labels



Game Blending
• Label accuracy evaluation issues:

• Hard to automatically detect blending
• No ground truth for blended levels

• Proxy evaluation:
• Train a classifier on original segments to predict which game they belong to
• Test to see how predictions on CVAE-generated segments change with different 

conditioning labels
• Sample 1000 latent vectors
• Condition generation of each using each of 8 possible conditioning labels 
• For each, compute % of generated segments predicted as SMB, KI or MM by classifier



Game Blending

• Expectations
• Conditioning with an original game label (<100>,<010>,<001>) 

--- e.g. using <100> → very high % of SMB predictions
• Conditioning with blended game label (e.g. <110>, <101>)

--- more variance among predictions
--- e.g. using <101> →moderately high % for both SMB/MM, 
but not too high, low % for KI



Game Blending

• Expectations
• Conditioning with an original game label (<100>,<010>,<001>) 

--- e.g. using <100> → very high % of SMB predictions
• Conditioning with blended game label (e.g. <110>, <101>)

--- more variance among predictions
--- e.g. using <101> →moderately high % for both SMB/MM, 
but not too high, low % for KI

• Results
• True to expectations
• <100>, <010>, <001> → high% for SMB, KI, MM respectively
• More variance among labels with multiple 1s (i.e. blended)
• Most variance using <000> and <111>

Blending Classification



Game Blending
• Further evaluation:

• Compare distributions of levels obtained using each label with original game distributions
• Generated 1000 segments using each blend label
• Computed E-distance between each set of 1000 vs. each of SMB, KI and MM
• Lower the E-distance between 2 distributions, more similar they are
• Used 4 tile-based metrics – Density, Leniency, Nonlinearity, Interestingness



Game Blending
• Further evaluation:

• Compare distributions of levels obtained using each label with original game distributions
• Generated 1000 segments using each blend label
• Computed E-distance between each set of 1000 vs. each of SMB, KI and MM
• Lower the E-distance between 2 distributions, more similar they are
• Used 4 tile-based metrics – Density, Leniency, Nonlinearity, Interestingness



Game Blending



Conclusion

• Explored the use of conditional VAEs for PCGML

• Enable controllable level generation and blending

• Editing and producing novel variations of existing levels



Future Work

• Combine with evolutionary search for further controllability

• Blending – improve quality, more controllability

• More thorough focus on design patterns, more robust evaluations (user-study, playability)

• Combine with our sequential model for enabling conditional generation of whole levels

• Incorporate into co-creative tools



Future Work

Anurag Sarkar
Northeastern University

sarkar.an@northeastern.edu

Contact

• Combine with evolutionary search for further controllability

• Blending – improve quality, more controllability

• More thorough focus on design patterns, more robust evaluations (user-study, playability)

• Combine with our sequential model for enabling conditional generation of whole levels

• Incorporate into co-creative tools


