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• Conditional VAEs enable controllability as 
part of the model itself
• Train on labeled data
• Generation conditioned on input labels
• Various design affordances

Sarkar, Yang and Cooper, 2019

Sarkar and Cooper, 2020

Snodgrass and Sarkar, 2020 Sarkar, Summerville, Snodgrass, 
Bentley, Osborn, 2020



Variational Autoencoder (VAE)

source: jdykeman.github.io/ml/2016/12/21/cvae.html

• Autoencoders are neural nets that learn lower-dimensional data representations
• Encoder → input data to latent space
• Decoder → latent space to reconstructed data

• VAEs make latent space model a probability distribution (e.g. Gaussian)
• Allows learning continuous latent spaces
• Enables generative abilities similar to those of GANs (sampling, interpolation)
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Conditional VAE (CVAE)
• CVAEs associate input data with labels during training
• Encoder uses label to learn latent encodings of inputs
• Decoder uses same label to learn how to reconstruct input from latent encoding
• Same latent vector can produce different outputs by varying label

source: jdykeman.github.io/ml/2016/12/21/cvae.html



Conditional VAE (CVAE)

• CVAE could inform level design/generation by:
• Enabling controllable generation by using labels to produce desired content
• Generate variations of existing content by decoding it using different labels

source: jdykeman.github.io/ml/2016/12/21/cvae.html



Approach
• Games:

• Three conditioning approaches:
• Game elements
• Mario design patterns
• Game blending

• For all cases:
• 16x16 segments
• Binary-encoded vectors as labels
• 3 latent dimensions per model (32, 64, 128)

Super Mario Bros. Kid Icarus Mega Man



Game Elements

• Unique set of conditioning labels for each game

• Label length → number of different elements
• 5 for SMB/MM, 4 for KI
• Each unique label corresponds to a unique 

combination of elements

• Trained separate CVAE for each game

• Labels for training segments determined by checking for 
the relevant game elements within that segment
• Present → set bit to 1
• Absent → set bit to 0

< Enemy, Pipe, Coin, Breakable, ?-Mark >

< Hazard, Door, Moving, Stationary >

< Hazard, Door, Ladder, Platform, Collectible >



Game Elements

• Conditioning Accuracy Evaluation:
• For each game, sampled 1000 latent vectors

• Conditioned generation of each using each possible label (32 for SMB/MM, 16 for KI)

• Compared elements in generated segments with labels used for generation

• Exact → all elements present

• None → none of the elements present



Game Elements

Super Mario Bros. Kid Icarus Mega Man



Game Elements



Design Patterns

• 10 SMB design patterns adapted from 
Dahlskog and Togelius, “Patterns and 
Procedural Content Generation: Revisiting 
Mario in World 1 Level 1”, 2012

• Binary labels of length 10

• Used levels from
• Super Mario Bros.
• Super Mario Bros II: The Lost Levels

• Labels assigned manually based on visual 
inspection

Mario Design Patterns



Design Patterns

• More challenging to evaluate
• Unlike game elements, couldn’t 

automatically check for design 
patterns

• Couldn’t automatically determine 
label matches

• No success in training a classifier due 
to low amount of data relative to 
number of unique labels

• Currently, restricted to visual 
inspection

Mario Design Patterns



Design Patterns



Game Blending

• Trained on segments from all 3 games taken together

• 3-element labels indicating which game a segment 
belonged to

• Blending by conditioning generation using blended 
labels
• <110> → SMB + KI
• <011> → KI + MM
• <101> → SMB + MM

Super Mario Bros.: <100>

Kid Icarus: <010>

Mega Man: <001>
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• Label accuracy evaluation issues:

• Hard to automatically detect blending
• No ground truth for blended levels
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Game Blending
• Label accuracy evaluation issues:

• Hard to automatically detect blending
• No ground truth for blended levels

• Proxy evaluation:
• Train a classifier on original segments to predict which game they belong to
• Test to see how predictions on CVAE-generated segments change with different 

conditioning labels
• Sample 1000 latent vectors
• Condition generation of each using each of 8 possible conditioning labels 
• For each, compute % of generated segments predicted as SMB, KI or MM by classifier



Game Blending

• Expectations
• Conditioning with an original game label (<100>,<010>,<001>) 

--- e.g. using <100> → very high % of SMB predictions
• Conditioning with blended game label (e.g. <110>, <101>)

--- more variance among predictions
--- e.g. using <101> →moderately high % for both SMB/MM, 
but not too high, low % for KI



Game Blending

• Expectations
• Conditioning with an original game label (<100>,<010>,<001>) 

--- e.g. using <100> → very high % of SMB predictions
• Conditioning with blended game label (e.g. <110>, <101>)

--- more variance among predictions
--- e.g. using <101> →moderately high % for both SMB/MM, 
but not too high, low % for KI

• Results
• True to expectations
• <100>, <010>, <001> → high% for SMB, KI, MM respectively
• More variance among labels with multiple 1s (i.e. blended)
• Most variance using <000> and <111>

Blending Classification



Game Blending
• Further evaluation:

• Compare distributions of levels obtained using each label with original game distributions
• Generated 1000 segments using each blend label
• Computed E-distance between each set of 1000 vs. each of SMB, KI and MM
• Lower the E-distance between 2 distributions, more similar they are
• Used 4 tile-based metrics – Density, Leniency, Nonlinearity, Interestingness
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Game Blending



Conclusion

• Explored the use of conditional VAEs for PCGML

• Enable controllable level generation and blending

• Editing and producing novel variations of existing levels



Future Work

• Combine with evolutionary search for further controllability

• Blending – improve quality, more controllability

• More thorough focus on design patterns, more robust evaluations (user-study, playability)

• Combine with our sequential model for enabling conditional generation of whole levels

• Incorporate into co-creative tools
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