Conditional Level Generation and
Game Blending

Anurag Sarkar Zhihan Yang Seth Cooper

Northeastern University Carleton College Northeastern University

Motivation

e Variational Autoencoders (VAEs) have been

u S e d fo r ge n e ra tl n g a n d b I e n d I n g ga m e I eve | S . - 7y »':_V» (A s)'_;Sﬂ (2 m'). (s "."'E"r"ﬂ"'frr"‘." ')TE:")‘}"'”T)?”'”

Sarkar, Yang and Cooper, 2019

VOI000000000000 00

Snodgrass and Sarkar 2020 Sarkar, Summerville, Snodgrass,
Bentley, Osborn, 2020

Sarkar and Cooper 2020

Motivation

e Variational Autoencoders (VAEs) have been

used for generating and blending game Ievels . - o 'n'.;sbn'»'n'»').»')'n "’"E"r"ﬂ"""i'“!' ')TE:”}'"’),‘T,,"D')

* Controllability via latent vector evolution s e S
. . . . Sarkar, Yang and Cooper, 2019

e Define objective function

* Run search in latent space to evolve
desired vectors

VU000 000000000 00

Snodgrass and Sarkar 2020 Sarkar, Summerville, Snodgrass,
Bentley, Osborn, 2020

Sarkar and Cooper 2020

Motivation

e Variational Autoencoders (VAEs) have been
used for generating and blending game levels

e Controllability via latent vector evolution
e Define objective function
* Run search in latent space to evolve
desired vectors
--- post-training process independent of :
the model
--- sometimes limited controllability

Sarkar, Yang and Cooper, 2019

VU000 00000000O0 00

Snodgrass and Sarkar 2020 Sarkar, Summerville, Snodgrass,
Bentley, Osborn, 2020

Sarkar and Cooper 2020

Motivation

e Variational Autoencoders (VAEs) have been
used for generating and blending game levels

= o
P S AL AL LA AL A

e Controllability via latent vector evolution
e Define objective function
* Run search in latent space to evolve
desired vectors |
--- post-training process independent of :
the model
--- sometimes limited controllability

Sarkar, Yang and Cooper, 2019

Snorass andf Sark 2020 Sarkar, Summerville, Snodgrass,
Bentley, Osborn, 2020

* Conditional VAEs enable controllability as
part of the model itself
* Train on labeled data
* Generation conditioned on input labels
e Various design affordances

Variational Autoencoder (VAE)

e Autoencoders are neural nets that learn lower-dimensional data representations
* Encoder = input data to latent space
* Decoder = latent space to reconstructed data
* VAEs make latent space model a probability distribution (e.g. Gaussian)
* Allows learning continuous latent spaces
* Enables generative abilities similar to those of GANs (sampling, interpolation)

latent space latent space latent space

source: jdykeman.github.io/ml/2016/12/21/cvae.html|

Variational Autoencoder (VAE)

e Autoencoders are neural nets that learn lower-dimensional data representations
* Encoder = input data to latent space
* Decoder = latent space to reconstructed data
* VAEs make latent space model a probability distribution (e.g. Gaussian)
* Allows learning continuous latent spaces
* Enables generative abilities similar to those of GANs (sampling, interpolation)

latent space latent space latent space

source: jdykeman.github.io/ml/2016/12/21/cvae.html|

Conditional VAE (CVAE)

CVAEs associate input data with labels during training

Encoder uses label to learn latent encodings of inputs

Decoder uses same label to learn how to reconstruct input from latent encoding
Same latent vector can produce different outputs by varying label

¥ ! i
latent space latent space latent space

source: jdykeman.github.io/ml/2016/12/21/cvae.html|

Conditional VAE (CVAE)

* CVAE could inform level design/generation by:
* Enabling controllable generation by using labels to produce desired content
* Generate variations of existing content by decoding it using different labels

latent space latent space | latent space

source: jdykeman.github.io/ml/2016/12/21/cvae.html|

Approach

1o
e O e

Super Mario Bros. Kid Icarus Mega Man

)
-

* Three conditioning approaches:
* Game elements
* Mario design patterns
 Game blending

* For all cases:
* 16x16 segments
* Binary-encoded vectors as labels
* 3 latent dimensions per model (32, 64, 128)

Game Elements

Unique set of conditioning labels for each game

Label length = number of different elements
e 5 for SMB/MM, 4 for Kl
* Each unique label corresponds to a unique
combination of elements

Trained separate CVAE for each game

Labels for training segments determined by checking for
the relevant game elements within that segment

* Present - setbitto 1

* Absent = set bitto 0

(=]

Kl (7 IEE 7]

Rty Jebht=]
g g R R R X RLIR X R
P Y

SMB - (10011)

< Enemy, Pipe, Coin, Breakable, ?-Mark >

=
| | [l
: A
s 31 'i'l“ll = o
FEEEE
FEEE %
I T

K— (1101}

< Hazard, Door, Moving, Stationary >

= al) Y
S0 oo o o o o o o
= FEEEE

MM - <10101>
< Hazard, Door, Ladder, Platform, Collectible >

Game Elements

* Conditioning Accuracy Evaluation:
* For each game, sampled 1000 latent vectors

Conditioned generation of each using each possible label (32 for SMB/MM, 16 for Kl)

Compared elements in generated segments with labels used for generation

Exact = all elements present

None = none of the elements present

Match %

Frequency

g

20

10

350

g

50

i}

Game Elements

Class Labels

Super Mario Bros.

100 100
Exact Mone Exact None Exact None
90 a0
ssesss Train-Exact «:-:-: Train-None . «eesss Train-Exact ------ Train-None s+e++- Train-Exact ------ Train-None
70 70
& &
-— -
o o
]]
30
20 20
10 10
0 0
o 1 2 3 4 s 6 7 8 16 17 18 20 2 22 23
o 1 2 3 4 s 16 18 19 20 22 23 24 26 27 28 ¢+ 2z 35 4 5 6 7 & 9 10 1 12 13 14
Class Labels Class Labels Class Labels
300 900
800
250
700
200 500
g g so0
£ 150 z
o o
& £ a0
100 300
200
50
100
I I I 0 I m I - —_ . o - I - - - I - - -
o 1 2 3 4 5 & 7 8 9 10 1 12 13 14 15 otz 3 4 5 6 7 8 1B u 1B 20 A 2 B
o 1 2 3 4 5 16 18 19 20 22 23 24 26 27 28 e Labels Clas Labels

Kid Icarus Mega Man

Game Elements

ol il o i

FrEFFF

FEFFF

Random

rFrrr

(DUﬂUUlﬁ ﬂﬂﬁﬂfﬁ. (001005. (010003. (10000) (0001) (0010) (0100) (1000)
(a) SMB (b) K1

5

i i B

Random

(00001) (00010) (00100) (01000) (10000)

Design Patterns

10 SMB design patterns adapted from
Dahlskog and Togelius, “Patterns and

Procedural Content Generation: Revisiting —¢").107d¢ (EH1): group of 2 or more enemies

Gap (G): 1 or more gaps in the ground

Mario in World 1 Level 17, 2012 Pipe Valley (PV): valley created by 2 pipes
Gap Valley (GV): valley containing a Gap
Binary labels of length 10 Null (empty) Valley (NV): valley with no enemies

Enemy Valley (EV): valley with 1 or more enemies
Multi-Path (MP): segment split into multiple parts hori-

Used levels from zontally by floating platforms
* Super Mario Bros. Risk-Reward (RR): segment containing a collectable
« Super Mario Bros Il: The Lost Levels guarded by an enemy

Stair Up (SU): ascending stair case pattern
_ _ Stair Down (SD): descending stair case pattern
Labels assigned manually based on visual

. _ Mario Design Patterns
Inspection

Design Patterns

* More challenging to evaluate
* Unlike game elements, couldn’t
automatically check for design
patterns

e Couldn’t automatically determine
label matches

* No success in training a classifier due
to low amount of data relative to
number of unique labels

* Currently, restricted to visual
Inspection

Enemy Horde (EH): group of 2 or more enemies

Gap (G): 1 or more gaps in the ground

Pipe Valley (PV): valley created by 2 pipes

Gap Valley (GV): valley containing a Gap

Null (empty) Valley (NV): valley with no enemies
Enemy Valley (EV): valley with 1 or more enemies
Multi-Path (MP): segment split into multiple parts hori-
zontally by floating platforms

Risk-Reward (RR): segment containing a collectable
guarded by an enemy

Stair Up (SU): ascending stair case pattern

Stair Down (SD): descending stair case pattern

Mario Design Patterns

'i;l'i'l'i'ri'i'l'i'l' o

FEFEEFEFEFE TR EEEEE

CEFEEFEFEE TR ERE RS

Original

o
alal
rrrr
e
FrrrErrE
FEFF]
FFFFFF

FEFFEFFE e = ie e e e e e e e i'rl'l'l'

r
¥

r 3
I EEEEEEEEEEEEEE

CEEFFERFEEF R FrFEFrFEFEE e e = e e e R TR

r
rr

rr

& il il
ol il =i =l = i =il mil il sl el

(SU)

E I EEEEEEEEEEEEE S

(MP)

(PV-NV-MP)

gn Patterns

-

FEEEEEREEEEEEEE R E ool of s oo i A me mia il e

ol ol il ol il il i oz sasiosidel meoos ssdozdsdscdeldedes seded sl FFrFFFFFErFrFrEr

EEEEEEEEEEEEEEEE rl'i:l'i'l'i'i' CEFEEEE |'r|'r|'r|" 'i'l'i'l'i'ri'i'l'i'l'i'l"i'i' EEFEFEFEFEFEFEEEEEEE T i izl'i'ri'i'l'i'l'i'll'i'll

o izl'i'ri'i'l'i'l'i'l'i'i'

(EH-G)

o of o ol il o ol o i

(EH-MP)

o of o ol ol il ol o i

(EH)

E I EEEEEEEEEEEEEE IS R R

(G)

EEEEEEEEEEEE R

(G-MP)

Game Blending

* Trained on segments from all 3 games taken together

* 3-element labels indicating which game a segment
belonged to

 Blending by conditioning generation using blended Kid Icarus: <010>
labels
e <110>~>svB+KI :
¢ <011> = KI+ MM N —_.
. <101>>SMB+MM e i

‘‘

Mega Man: <001>

Game Blending

e Label accuracy evaluation issues:
* Hard to automatically detect blending
* No ground truth for blended levels

Game Blending

e Label accuracy evaluation issues:
* Hard to automatically detect blending
* No ground truth for blended levels

* Proxy evaluation:
* Train a classifier on original segments to predict which game they belong to
* Test to see how predictions on CVAE-generated segments change with different
conditioning labels

Game Blending

e Label accuracy evaluation issues:
* Hard to automatically detect blending
* No ground truth for blended levels

* Proxy evaluation:

* Train a classifier on original segments to predict which game they belong to

* Test to see how predictions on CVAE-generated segments change with different
conditioning labels

 Sample 1000 latent vectors
* Condition generation of each using each of 8 possible conditioning labels
* For each, compute % of generated segments predicted as SMB, KI or MM by classifier

Game Blending

Expectations
e Conditioning with an original game label (<100>,<010>,<001>)
--- e.g. using <100> -2 very high % of SMB predictions
e Conditioning with blended game label (e.g. <110>, <101>)
--- more variance among predictions
--- e.g. using <101> - moderately high % for both SMB/MM,
but not too high, low % for Ki

Game Blending

Expectations
e Conditioning with an original game label (<100>,<010>,<001>)
--- e.g. using <100> -2 very high % of SMB predictions
e Conditioning with blended game label (e.g. <110>, <101>)
--- more variance among predictions
--- e.g. using <101> - moderately high % for both SMB/MM,
but not too high, low % for Ki

Results
* True to expectations
¢ <100>, <010>, <001> - high% for SMB, KI, MM respectively
* More variance among labels with multiple 1s (i.e. blended)
* Most variance using <000>and <111>

Label || SMB | KI | MM
(000) || 38.7 | 18.1 | 43.2
oty || 3.8 | 2.4 [938
(010 || 07 |955] 338
o011y || 6.8 | 2291703
(100) || 97.6 | 1.4 | 1

(101) || 71.9 | 2.9 [25
(110) || 86.5 | 11.8 | 1.7
(111) || 56.7 | 103 | 33

Blending Classification

Game Blending

* Further evaluation:
 Compare distributions of levels obtained using each label with original game distributions
* Generated 1000 segments using each blend label

 Computed E-distance between each set of 1000 vs. each of SMB, Kl and MM
* Lower the E-distance between 2 distributions, more similar they are
* Used 4 tile-based metrics — Density, Leniency, Nonlinearity, Interestingness

Game Blending

Further evaluation:
 Compare distributions of levels obtained using each label with original game distributions
* Generated 1000 segments using each blend label
 Computed E-distance between each set of 1000 vs. each of SMB, Kl and MM
* Lower the E-distance between 2 distributions, more similar they are
* Used 4 tile-based metrics — Density, Leniency, Nonlinearity, Interestingness

0.3

—SMB
—KI
—MM

0.2

E-Distance

0.1

000 001 010 011 100 101 110 111
Blend Conditioning Labels (<SMB,KI,MM>)

Game Blending

AR AT

FEEEFEEEEEEEFE

b i
e kkk

F e

o
0 0 5

ekl
el i

b

AMAAANAT AN
AATATAATANASAE

AT AN
T U

O

hif

-
o
a
al
al
o
r
o
o
ol
"
al
ol
“ul

b b

gk
ool ofof o of o
SrrRFrE

b b B b
el e
AN AT

e o s
FEEEEEEEEEEE T

=i
N
k.
-
5

pﬁrhhnrﬁ
gl FEFFEFFFEFEFFEET

000 001 100 101 110

Conclusion

* Explored the use of conditional VAEs for PCGML
* Enable controllable level generation and blending

* Editing and producing novel variations of existing levels

Future Work

Combine with evolutionary search for further controllability

Blending — improve quality, more controllability

More thorough focus on design patterns, more robust evaluations (user-study, playability)
Combine with our sequential model for enabling conditional generation of whole levels

Incorporate into co-creative tools

Future Work

Combine with evolutionary search for further controllability

Blending — improve quality, more controllability

More thorough focus on design patterns, more robust evaluations (user-study, playability)
Combine with our sequential model for enabling conditional generation of whole levels

Incorporate into co-creative tools

Contact

Anurag Sarkar
Northeastern University
sarkar.an@northeastern.edu

