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e Define objective function

* Run search in latent space to evolve
desired vectors
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Motivation

e Variational Autoencoders (VAEs) have been
used for generating and blending game levels

e Controllability via latent vector evolution
e Define objective function
* Run search in latent space to evolve
desired vectors
--- post-training process independent of :
the model
--- sometimes limited controllability
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Motivation

e Variational Autoencoders (VAEs) have been
used for generating and blending game levels
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e Controllability via latent vector evolution
e Define objective function
* Run search in latent space to evolve
desired vectors |
--- post-training process independent of :
the model
--- sometimes limited controllability

Sarkar, Yang and Cooper, 2019
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* Conditional VAEs enable controllability as
part of the model itself
* Train on labeled data
* Generation conditioned on input labels
e Various design affordances




Variational Autoencoder (VAE)

e Autoencoders are neural nets that learn lower-dimensional data representations
* Encoder = input data to latent space
* Decoder = latent space to reconstructed data
* VAEs make latent space model a probability distribution (e.g. Gaussian)
* Allows learning continuous latent spaces
* Enables generative abilities similar to those of GANs (sampling, interpolation)
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Conditional VAE (CVAE)

CVAEs associate input data with labels during training

Encoder uses label to learn latent encodings of inputs

Decoder uses same label to learn how to reconstruct input from latent encoding
Same latent vector can produce different outputs by varying label
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Conditional VAE (CVAE)

* CVAE could inform level design/generation by:
* Enabling controllable generation by using labels to produce desired content
* Generate variations of existing content by decoding it using different labels
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Approach
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* Three conditioning approaches:
* Game elements
* Mario design patterns
 Game blending

* For all cases:
* 16x16 segments
* Binary-encoded vectors as labels
* 3 latent dimensions per model (32, 64, 128)



Game Elements

Unique set of conditioning labels for each game

Label length = number of different elements
e 5 for SMB/MM, 4 for Kl
* Each unique label corresponds to a unique
combination of elements

Trained separate CVAE for each game

Labels for training segments determined by checking for
the relevant game elements within that segment

* Present - setbitto 1

* Absent = set bitto 0
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Game Elements

* Conditioning Accuracy Evaluation:
* For each game, sampled 1000 latent vectors

Conditioned generation of each using each possible label (32 for SMB/MM, 16 for Kl)

Compared elements in generated segments with labels used for generation

Exact = all elements present

None = none of the elements present
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Game Elements
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Design Patterns

10 SMB design patterns adapted from
Dahlskog and Togelius, “Patterns and

Procedural Content Generation: Revisiting —¢").107d¢ (EH1): group of 2 or more enemies

Gap (G): 1 or more gaps in the ground

Mario in World 1 Level 17, 2012 Pipe Valley (PV): valley created by 2 pipes
Gap Valley (GV): valley containing a Gap
Binary labels of length 10 Null (empty) Valley (NV): valley with no enemies

Enemy Valley (EV): valley with 1 or more enemies
Multi-Path (MP): segment split into multiple parts hori-

Used levels from zontally by floating platforms
* Super Mario Bros. Risk-Reward (RR): segment containing a collectable
« Super Mario Bros Il: The Lost Levels guarded by an enemy

Stair Up (SU): ascending stair case pattern
_ _ Stair Down (SD): descending stair case pattern
Labels assigned manually based on visual

. _ Mario Design Patterns
Inspection



Design Patterns

* More challenging to evaluate
* Unlike game elements, couldn’t
automatically check for design
patterns

e Couldn’t automatically determine
label matches

* No success in training a classifier due
to low amount of data relative to
number of unique labels

* Currently, restricted to visual
Inspection

Enemy Horde (EH): group of 2 or more enemies

Gap (G): 1 or more gaps in the ground

Pipe Valley (PV): valley created by 2 pipes

Gap Valley (GV): valley containing a Gap

Null (empty) Valley (NV): valley with no enemies
Enemy Valley (EV): valley with 1 or more enemies
Multi-Path (MP): segment split into multiple parts hori-
zontally by floating platforms

Risk-Reward (RR): segment containing a collectable
guarded by an enemy

Stair Up (SU): ascending stair case pattern

Stair Down (SD): descending stair case pattern

Mario Design Patterns
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Game Blending

* Trained on segments from all 3 games taken together

* 3-element labels indicating which game a segment
belonged to

 Blending by conditioning generation using blended Kid Icarus: <010>
labels
e <110>~>svB+KI :
¢ <011> = KI+ MM N —_.
. <101>>SMB+MM e i

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Mega Man: <001>



Game Blending

e Label accuracy evaluation issues:
* Hard to automatically detect blending
* No ground truth for blended levels
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* Proxy evaluation:
* Train a classifier on original segments to predict which game they belong to
* Test to see how predictions on CVAE-generated segments change with different
conditioning labels



Game Blending

e Label accuracy evaluation issues:
* Hard to automatically detect blending
* No ground truth for blended levels

* Proxy evaluation:

* Train a classifier on original segments to predict which game they belong to

* Test to see how predictions on CVAE-generated segments change with different
conditioning labels

 Sample 1000 latent vectors
* Condition generation of each using each of 8 possible conditioning labels
* For each, compute % of generated segments predicted as SMB, KI or MM by classifier



Game Blending

Expectations
e Conditioning with an original game label (<100>,<010>,<001>)
--- e.g. using <100> -2 very high % of SMB predictions
e Conditioning with blended game label (e.g. <110>, <101>)
--- more variance among predictions
--- e.g. using <101> - moderately high % for both SMB/MM,
but not too high, low % for Ki



Game Blending

Expectations
e Conditioning with an original game label (<100>,<010>,<001>)
--- e.g. using <100> -2 very high % of SMB predictions
e Conditioning with blended game label (e.g. <110>, <101>)
--- more variance among predictions
--- e.g. using <101> - moderately high % for both SMB/MM,
but not too high, low % for Ki

Results
* True to expectations
¢ <100>, <010>, <001> - high% for SMB, KI, MM respectively
* More variance among labels with multiple 1s (i.e. blended)
* Most variance using <000>and <111>

Label || SMB | KI | MM
(000) || 38.7 | 18.1 | 43.2
oty || 3.8 | 2.4 [ 938
(010 || 07 |955] 338
o011y || 6.8 | 2291703
(100) || 97.6 | 1.4 | 1

(101) || 71.9 | 2.9 [ 25
(110) || 86.5 | 11.8 | 1.7
(111) || 56.7 | 103 | 33

Blending Classification




Game Blending

* Further evaluation:
 Compare distributions of levels obtained using each label with original game distributions
* Generated 1000 segments using each blend label

 Computed E-distance between each set of 1000 vs. each of SMB, Kl and MM
* Lower the E-distance between 2 distributions, more similar they are
* Used 4 tile-based metrics — Density, Leniency, Nonlinearity, Interestingness



Game Blending

Further evaluation:
 Compare distributions of levels obtained using each label with original game distributions
* Generated 1000 segments using each blend label
 Computed E-distance between each set of 1000 vs. each of SMB, Kl and MM
* Lower the E-distance between 2 distributions, more similar they are
* Used 4 tile-based metrics — Density, Leniency, Nonlinearity, Interestingness
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Game Blending
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Conclusion

* Explored the use of conditional VAEs for PCGML
* Enable controllable level generation and blending

* Editing and producing novel variations of existing levels



Future Work

Combine with evolutionary search for further controllability

Blending — improve quality, more controllability

More thorough focus on design patterns, more robust evaluations (user-study, playability)
Combine with our sequential model for enabling conditional generation of whole levels

Incorporate into co-creative tools
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