Evaluating and Comparing Skill Chains and Rating Systems for Dynamic Difficulty Adjustment

Anurag Sarkar and Seth Cooper

Northeastern University

- *Rating systems* assign ratings to players ۲ based on skill and levels based on difficulty
- Dynamic difficulty adjustment (DDA) via ٠ player-vs-level matchmaking

- *Skill chains* define the order of player skill acquisition during gameplay
- Used to define level progressions of varying difficulty

- Existing skill models combining rating systems and skill chains only applied to specific type of HCGs
- Relative pros and cons of using rating systems and skill chains not clear

Rating systems and skill chains have both been used for difficulty balancing in human computation games

Games

Evaluations using two human computation games

- 2D platformer HCG modeling item collection
- Skills based on running and jump mechanics

Paradox

timed o

timed tw

- 2D puzzle HCG modeling constraint satisfaction
- Skills based on using value-assigning tools

For each game, recruited players using Amazon Mechanical Turk

Players assigned randomly to one of 4 progressions

- Three broad measures
 - Quantity and difficulty of completed levels
 - Skill acquisition rates
 - Failure and completion rates for different types ulletof levels

Experiment

Results

Quantity and Difficulty of Completed Levels

Variable	SKILL_RAT	SKILL_ONLY	RAT_ONLY	RANDOM	
Play Time $(p = .29)$	355	489	419	269	
Final Player Rating $(p = .19)$	1406	1401	1353	1358	
Max Level Rating [†] ($p < .001$)	1669 ^a	1839 ^b	1662 ^a	1517 ^a	
Levels Completed [†] ($p < .001$)	3 ^a	2^{b}	3^{ab}	1 ^c	
Levels Failed $(p = .1)$	2.5	4	3	4	
Max Skillset Size $(p = .14)$	2	2	2	1	

Variable	SKILL_RAT	SKILL_ONLY	RAT_ONLY	RANDOM
Play Time $(p = .81)$	443	481	466	395
Final Player Rating $(p = .09)$	1069	1122	1075	1395
Max Level Rating [†] ($p < .001$)	758 ^a	758 ^a	602^{b}	0^b
Levels Completed [†] ($p < .001$)	3 ^{<i>ab</i>}	3^a	2^{b}	0^c
Levels Failed [†] $(p = .03)$	1 ^{<i>a</i>}	2^{ab}	4 ^b	2^{ab}
Max Skillset Size [†] $(p < .001)$	2^{ab}	3^a	2 ^{bc}	0^c

Iowa James

Paradox

- Variable analysis showing median values •
- Using *skill chains* can lead to players completing harder levels ٠
- Adding *ratings system* can lead to players completing more levels

Skill Acquisition Rates

Skill	SKILL_RAT	SKILL_ONLY	RAT_ONLY	RANDOM			1		
navigating	96	91	97	58	Skill	SKILL_RAT	SKILL_ONLY	RAT_ONLY	RANDOM
hazard_static	57.9	55.7	52.9	46.2	white	86.5	93.8	79.6	46.5
hazard_moving	4	18.6	19.1	21.2	black	88.5	87.7	61.1	46.5
timed_one	34.2	13.4	20.6	19.2	star	48.1	50.6	42.6	30.2
platforming	38.2	19.6	17.7	21.2			17.3	3.7	20.9
timed_two	2.6	4.1	19.1	7.7	challenge	9.0	17.5	5.7	20.9
platforming_hazard	1.3	3.1	4.4	5.8	Paradox (χ²(5) =25.9; p = .002)				

- Percentage of players acquiring individual skills in each progression
- Using *skill chains* can lead to players acquiring skills at a higher rate

Failure and Completion Rates for Different Level Types

Using only *rating systems* causes players to complete fewer different types of levels