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Techniquesinclude domains using variational autoencoders (VAEs) by

-- Domain transfer --- Increasing input domain from 2 to 6 games

-- Combining learned models --- Introducing a new affordance vocabulary to unify

-- Building game graphs using & - e game representations

learned models --- Incorporating paths to generate blended levels that
-- Learning new blended are playable

domains Guzdialand Ried!, 2018 --- Introducing the use of GRU-VAE for PCGML




Affordances

* Increase input domain for blending from 2 to 6 games :solid, (¢.g., ground or platforms)

: solid, breakable, (e.g., breakable bricks in SMB)
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* Incorporated paths generated by A* agents tuned using
jump arcs for each game

Two types of models
* Linear-VAE — consisting of fully-connected linear
layers
 GRU-VAE - consisting of Gated Recurrent Unit
(GRU) layers

Sample Generations Four versions of each model differing in latent
P dimension size — 32, 64, 128, 256

Two-part evaluation
* Tile-based Metrics

» Captures gameplay behavior/mechanics in addition to
level structure
* Helps generate playable blended levels

--- E-distance (measure of distribution similarity)
between generated and original levels

--- E-distance computed using: Density,
Nonlinearity, Leniency, Interestingness, Path-
Proportion

Linear-VAE Samples

* Agent-based Playability
--- Fréchet distance (measure of path similarity)
between A* agent paths and paths in generated
levels

GRU-VAE Samples




Tile-based evaluation (E-distance)
Model [ ALL [ CV [ MM [ Met [ SMB
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Agent-based evaluation (playabilit
g Agent Fuilurc(p y y) * GRU_VAE

Model | Rate produces more
LIN-32 | 11.46%
LIN-64 11.72% playable levels

LIN-128 11.25% ~
LIN-256 11.14% (~95%) compared

GRU-32 T 4.52% to Linear-VAE
GRU-64 5.12%

GRU-128 1.81% (~89%) Linear SMB | MM GRU SMB | MM

GRU-256 1.55%

Qualitative Observations

GRU-VAE produces less noisy levels and more continuous Extracting blended physics from paths (Summerville et

paths al., EXAG 2020)
Linear-VAE produces more discernible interpolation with Vertical orientations

clearer blending

Other genres




