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Introduction Contribution

• Recent trend of creative 
PCGML focused on learning 
models for generating content 
outside of training domain

• Techniques include
-- Domain transfer
-- Combining learned models
-- Building game graphs using 
learned models
-- Learning new blended 
domains

• We extend prior work (above) in learning blended 
domains using variational autoencoders (VAEs) by

--- Increasing input domain from 2 to 6 games
--- Introducing a new affordance vocabulary to unify 
game representations
--- Incorporating paths to generate blended levels that 
are playable
--- Introducing the use of GRU-VAE for PCGMLGuzdial and Riedl, 2018

Snodgrass and Ontanon, 2016

Sarkar, Yang and Cooper, 2019



• Increase input domain for blending from 2 to 6 games
• Greater possibility space for blending

Super Mario Bros. Super Mario Bros. II: The Lost 
Levels

Metroid

Ninja Gaiden

Mega Man

Castlevania

Games Affordances

Ninja Gaiden Super Mario Bros.

Original

Domain 
Specific

Unified

• Introduced a new unified 
affordance vocabulary 
based on Video Game 
Affordance Corpus 
(Bentley and Osborn, 
2019)



• Incorporated paths generated by A* agents tuned using 
jump arcs for each game

• Captures gameplay behavior/mechanics in addition to 
level structure

• Helps generate playable blended levels

Paths Models and Evaluation

• Two types of models
• Linear-VAE – consisting of fully-connected linear 

layers
• GRU-VAE – consisting of Gated Recurrent Unit 

(GRU) layers

• Four versions of each model differing in latent 
dimension size – 32, 64, 128, 256

• Two-part evaluation
• Tile-based Metrics

--- E-distance (measure of distribution similarity) 
between generated and original levels
--- E-distance computed using: Density, 
Nonlinearity, Leniency, Interestingness, Path-
Proportion

• Agent-based Playability
--- Fréchet distance (measure of path similarity) 
between A* agent paths and paths in generated 
levels

Sample Generations

Linear-VAE Samples

GRU-VAE Samples



Tile-based evaluation (E-distance)

Agent-based evaluation (playability)

Results

• GRU-VAE better 
at learning level 
structure and 
patterns (lower 
E-distance)

• GRU-VAE 
produces more 
playable levels 
(~95%) compared 
to Linear-VAE 
(~89%)

Qualitative Observations

• GRU-VAE produces less noisy levels and more continuous 
paths

• Linear-VAE produces more discernible interpolation with 
clearer blending

Sample Interpolations

Future Work

• Extracting blended physics from paths (Summerville et 
al., EXAG 2020)

• Vertical orientations
• Other genres


