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Motivation

* GANSs and VAEs have been used for generating
platformer levels and dungeons via sampling,

interpol/?’
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Solution

Define
latent state
distributions

* Two-step solution:
 Modify VAE to learn encoding of next segment
rather than current segment
* Train a classifier to predict where next segment

should be placed

VAE (modified), source: jeremyjordan.me
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Solution

* Two-step solution:

Modify VAE to learn encoding of next segment
rather than current segment

* Train a classifier to predict where next segment

should be placed

* Hybrid PCGML model which enables:

Generating arbitrarily long levels via iterative
encoding-decoding of segments

Generating levels that can progress in multiple
directions

Generating blended levels rather than segments

VAE (modified), source: jeremyjordan.me
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Sequential Segment Generation

* Generative models based on VAEs trained on Super Mario Bros (SMB), Kid Icarus (KI),
Mega Man (MM) and blended SMB-KI domain (implementation details in paper)
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* Encoder = input data to latent space
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Sequential Segment Generation

* Generative models based on VAEs trained on Super Mario Bros (SMB), Kid Icarus (KI),

Mega Man (MM) and blended SMB-KI domain (implementation details in paper)

* Autoencoders are neural nets that learn
lower-dimensional data representations
* Encoder = input data to latent space
* Decoder =2 latent space to
reconstructed data

* VAEs make latent space model a probability
distribution (e.g. Gaussian)
* Allows learning continuous latent
spaces
* Enables generative abilities similar to
those of GANs (sampling, interpolation)
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Sequential Segment Generation

* VAE Loss function
* Reconstruction error
---error between input segment and reconstruction of input segment
* KL Divergence (between latent distribution and known prior)
---forces latent space to model a continuous, informative distribution



Sequential Segment Generation

* VAE Loss function
e Reconstruction error (modified)
---error between input segment and reconstruction of next input segment
---technically, no longer ‘auto’-encoding, but enables our approach

Standard
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Decoder
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Modified
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Reconstruction Error Computation



Sequential Segment Generation

Algorithm 1 GenerateLevel(init_segment, n)

Initialize level to init_segment

num_segments = 1

segment = init_segment

while num_segments < n do
z < Encoder(segment)
segment < Decoder(z)
Add segment to level
num_segments += 1

end while

return level




Placement Classification

* To generate levels that can dynamically progress in any direction, need to determine
where/how to place generated segments
e Directional classifier
 Random forest classifier trained on segments from SMB, KI, MM and SMB-KI
domain, labeled with direction of next segment in levels
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Placement Classification

* Input: same segments as before, Label: next direction
 SMB —right only, KI —up only, MM and SMB+KI — both
 70%-30% train-test split
* 100% accuracy for SMB, KI, SMB-KI, 98.73% for MM
* Post-processing after prediction (details in the paper)
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Placement Classification

Algorithm 2 GenerateLevelWithDirs(init_segment, n)

level « GenerateLevel(init_segment, n)
level with dirs « ()
for segment in level do

dir < Classifier(segment)

Add (segment,dir) to level _with_dirs
end for
return level with dirs




Evaluation

* Three-part evaluation
* Continuous nature of generated levels
* Properties of generated blended levels

* Quality of arbitrarily long generated levels



Discontinuity

* To test continuous flow of progression, introduced
Discontinuity metric
* Absolute distance between path tiles along the
adjoining edge of two successive segments
* Lower values = higher continuity between
successive segments
e Range from 0 (high continuity) to 16 (low continuity)
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Discontinuity

 Computed average per-segment Discontinuity
for 100 generated levels each for SMB, KI, MM
and SMB-KI using 2 methods for generating

segments:
* Sequential: using our algorithm Game, | Sequential | Mependent
. SMB 3.86 + 2.28 5.91 +£2.04
* Independent: successive segments KI 3004250 | 737+ 1.99
independent of each other MM | 6.54+2.63 | 11.18 £ 1.69
SMB-KI 54+ 2.42 9.84 +1.76

* For bOth’ generated segments combined Table 1: Average per-segment Discontinuity values along
usin gcC lassifier with standard deviation. A Wilcoxon Rank Sum Test showed
differences to be significant with p < .001 in all cases.
* Each generated level consisted of 12 segments
for SMB, Kl and SMB-KI and 16 segments for
MM

* Significantly lower discontinuity values using
Sequential for all games
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Example Levels
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Example Blended Levels

Blended SMB-KI-Sequential

Blended SMB-KI-Independent



Blending

* Generated blended SMB-KI levels of 12 segments each

* 6 sets of 100 each with a different starting segment
 Random sample from SMB-KI latent space

. Blend SMB | KI
[ J
Or!g!nal SMB segment T =
* Original KI segment SMB-25 4 | 9
* 3 segments interpolated between above 2 2::332 88651 113;’
* SMB-25%,KI-75% SMB-100 | 943 | 57
e Both-50% Random Blend | 43.4 | 56.6
e SMB-75% K|-25% Table 2: Percentage of segments (out of 100x12 = 1200) classi-
V4

fied as SMB-like and KI-like using the directional classifier.

* Evaluated using directional classifier
* Prediction: Right = Segment is more SMB-like
* Prediction: Up = Segment is more Kl-like
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Blending

 Compared generated blended levels with original SMB and Kl levels using tile metrics
* Density (proportion of solid tiles)
* Non-Linearity (unevenness of segment topology)
* Leniency (proxy for difficulty)
» Interestingness (proportion of decorative/collectible items)
* Path-Prop (proportion of path tiles)

(a) Density (b) Non-Linearity (c) Leniency

(d) Interestingness (e) Path-Prop

Figure 2: Per-segment tile metrics for original SMB and KI levels along with different types of blends.
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Progression

* Generate arbitrarily long levels without deteriorating quality

* Generated 100 levels of 120 segments each for SMB, KI and SMB-KI and 160
segments each for MM (approx. 10x size of average actual levels)
 Computed average per-segment Discontinuity and tile-based metrics for
each of the 10 subsections of each level
e That s, track if/how these values change as more segments are generated
conditioned on the previous ones
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Figure 3: Per-segment metric values plotted for each grouping of 16 segments for MM and each grouping of 12 segments for
the other games. x-axis values indicate 1st such grouping, 2nd such grouping etc. y-axis indicates average metric value for the
corresponding group of segments.
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Conclusion

Novel PCGML approach for sequential platformer level generation and blending
Generate arbitrarily-long coherent platformer levels
Generate platformer levels progressing in multiple directions

Blend levels from platformers progressing in different directions



Future Work

Investigate other placement strategies (e.g. heuristics vs. classifier)
Improve generation quality (particularly for Mega Man)
Empirically test generation of left-to-right progressing levels (such as in Ninja Gaiden)

Add controllability of generation beyond choice of initial segment
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