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Motivation

• GANs and VAEs have been used for generating 
platformer levels and dungeons via sampling, 
interpolation and evolution

• Work with fixed-size inputs and outputs
--- necessitates generation by segment rather 
than by level

• Existing methods combine independently 
generated segments to form whole levels
• Dungeons with discrete rooms
• Okay but not ideal for Mario
• Multi-directional platformers like Mega Man
• Game blending restricted to segments and 

not whole levels
Sarkar, Yang and Cooper, 2019

Generate and blend whole platformer levels progressing in 
multiple directions while still using latent variable models 

and their fixed-size inputs/outputs



Solution

• Two-step solution:
• Modify VAE to learn encoding of next segment 

rather than current segment
• Train a classifier to predict where next segment 

should be placed
VAE (modified), source: jeremyjordan.me

Random forest classifier
Source: https://community.tibco.com/wiki/random-forest-
template-tibco-spotfire



Solution

• Two-step solution:
• Modify VAE to learn encoding of next segment 

rather than current segment
• Train a classifier to predict where next segment 

should be placed

• Hybrid PCGML model which enables:
• Generating arbitrarily long levels via iterative 

encoding-decoding of segments
• Generating levels that can progress in multiple 

directions
• Generating blended levels rather than segments

VAE (modified), source: jeremyjordan.me

Random forest classifier
Source: https://community.tibco.com/wiki/random-forest-
template-tibco-spotfire



Sequential Segment Generation

• Generative models based on VAEs trained on Super Mario Bros (SMB), Kid Icarus (KI), 
Mega Man (MM) and blended SMB-KI domain (implementation details in paper)
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Sequential Segment Generation

Vanilla Autoencoder

• Generative models based on VAEs trained on Super Mario Bros (SMB), Kid Icarus (KI), 
Mega Man (MM) and blended SMB-KI domain (implementation details in paper)

• Autoencoders are neural nets that learn 
lower-dimensional data representations
• Encoder → input data to latent space
• Decoder → latent space to 

reconstructed data

• VAEs make latent space model a probability 
distribution (e.g. Gaussian)
• Allows learning continuous latent 

spaces
• Enables generative abilities similar to 

those of GANs (sampling, interpolation) Variational Autoencoder

Source: kvfrans.com



Sequential Segment Generation

• VAE Loss function
• Reconstruction error

---error between input segment and reconstruction of input segment
• KL Divergence (between latent distribution and known prior)

---forces latent space to model a continuous, informative distribution



Sequential Segment Generation

• VAE Loss function
• Reconstruction error (modified)

---error between input segment and reconstruction of next input segment
---technically, no longer ‘auto’-encoding, but enables our approach



Sequential Segment Generation



Placement Classification
• To generate levels that can dynamically progress in any direction, need to determine 

where/how to place generated segments
• Directional classifier

• Random forest classifier trained on segments from SMB, KI, MM and SMB-KI 
domain, labeled with direction of next segment in levels

Source: https://community.tibco.com/wiki/random-forest-template-tibco-spotfire



Placement Classification

• Input: same segments as before, Label: next direction 
• SMB – right only, KI – up only, MM and SMB+KI – both
• 70%-30% train-test split
• 100% accuracy for SMB, KI, SMB-KI, 98.73% for MM
• Post-processing after prediction (details in the paper)
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Placement Classification



Evaluation

• Three-part evaluation

• Continuous nature of generated levels

• Properties of generated blended levels

• Quality of arbitrarily long generated levels



Discontinuity

• To test continuous flow of progression, introduced 
Discontinuity metric
• Absolute distance between path tiles along the 

adjoining edge of two successive segments
• Lower values → higher continuity between 

successive segments
• Range from 0 (high continuity) to 16 (low continuity)

• Levels with better sense of progression would have a 
more continuous path through its segments i.e. low 
values of Discontinuity between successive pairs of 
segments

E.g. Discontinuity = 1

E.g. Discontinuity = 3
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Discontinuity
• Computed average per-segment Discontinuity 

for 100 generated levels each for SMB, KI, MM 
and SMB-KI using 2 methods for generating 
segments:
• Sequential: using our algorithm
• Independent: successive segments 

independent of each other
• For both, generated segments combined 

using classifier

• Each generated level consisted of 12 segments 
for SMB, KI and SMB-KI and 16 segments for 
MM

• Significantly lower discontinuity values using 
Sequential for all games
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Example Levels

SMB-Sequential

SMB-Independent

MM-Sequential MM-Independent KI-Sequential KI-Independent



Example Blended Levels

Blended SMB-KI-Sequential

Blended SMB-KI-Independent



Blending

• Generated blended SMB-KI levels of 12 segments each

• 6 sets of 100 each with a different starting segment
• Random sample from SMB-KI latent space
• Original SMB segment
• Original KI segment
• 3 segments interpolated between above 2

• SMB-25%,KI-75%
• Both-50%
• SMB-75%,KI-25%

• Evaluated using directional classifier
• Prediction: Right → Segment is more SMB-like
• Prediction: Up → Segment is more KI-like
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Blending
• Compared generated blended levels with original SMB and KI levels using tile metrics

• Density (proportion of solid tiles)
• Non-Linearity (unevenness of segment topology)
• Leniency (proxy for difficulty)
• Interestingness (proportion of decorative/collectible items)
• Path-Prop (proportion of path tiles)
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Progression

• Generate arbitrarily long levels without deteriorating quality

• Generated 100 levels of 120 segments each for SMB, KI and SMB-KI and 160 
segments each for MM (approx. 10x size of average actual levels)
• Computed average per-segment Discontinuity and tile-based metrics for 

each of the 10 subsections of each level
• That is, track if/how these values change as more segments are generated 

conditioned on the previous ones
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Conclusion

• Novel PCGML approach for sequential platformer level generation and blending

• Generate arbitrarily-long coherent platformer levels

• Generate platformer levels progressing in multiple directions

• Blend levels from platformers progressing in different directions



Future Work

• Investigate other placement strategies (e.g. heuristics vs. classifier)

• Improve generation quality (particularly for Mega Man)

• Empirically test generation of left-to-right progressing levels (such as in Ninja Gaiden)

• Add controllability of generation beyond choice of initial segment
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