Sequential Segment-based Level Generation and Blending
using Variational Autoencoders

Anurag Sarkar and Seth Cooper

Northeastern University

Motivation

* Generative Adversarial Networks (GANs) and | gy~ %
Variational Autoencoders (VAEs) have been | e
used for generating platformer levels and i —— o T
dungeons via sampling, interpolationand @

evolution

Volz et al., 2017 Gutierrez and Schrum, 2020

Sarkar, Yang and Cooper, 2019

Motivation

* Generative Adversarial Networks (GANs) and _‘_WL P
Variational Autoencoders (VAEs) have been | ' ‘
used for generating platformer levels and
dungeons via sampling, interpolation and
evolution

* Work with fixed-size inputs and outputs
--- necessitates generation by segment rather
than by level

Sarkar, Yang and Cooper, 2019

Motivation

 Generative Adversarial Networks (GANs) and _rff_, |

Variational Autoencoders (VAEs) have been ' e
used for generating platformer levels and | — oo =
dungeons via sampling, interpolation and @ e | ——
evolution g = |

* Work with fixed-size inputs and outputs Volz et al., 2017
--- necessitates generation by segment rather
than by level

* Existing methods combine independently
generated segments to form whole levels

Sarkar, Yang and Cooper, 2019

Motivation

* Generative Adversarial Networks (GANs) and
Variational Autoencoders (VAEs) have been
used for generating platformer levels and
dungeons via sampling, interpolation and
evolution

* Work with fixed-size inputs and outputs
--- necessitates generation by segment rather
than by level

* Existing methods combine independently

generated segments to form whole levels Gutierrez and Schrum, 2020
* Dungeons with discrete rooms

Motivation

* Generative Adversarial Networks (GANs) and
Variational Autoencoders (VAEs) have been
used for generating platformer levels and
dungeons via sampling, interpolation and
evolution

(=] ﬂ r_
m il
EEEEREEF L A A A

{a) Playahle level maximizing jumps (b) Playable level minimizing jumps

* Work with fixed-size inputs and outputs -

--- necessitates generation by segment rather g i o S
than by level

v

LA
(e} Unplayable level

Volz et al., 2017

* Existing methods combine independently

generated segments to form whole levels
* Dungeons with discrete rooms
* Okay but not ideal for Mario

Motivation

* Generative Adversarial Networks (GANs) and
Variational Autoencoders (VAEs) have been
used for generating platformer levels and
dungeons via sampling, interpolation and
evolution

* Work with fixed-size inputs and outputs
--- necessitates generation by segment rather =
than by level

Mega Man level, source: VGLC

* Existing methods combine independently
generated segments to form whole levels
* Dungeons with discrete rooms
* Okay but not ideal for Mario
e Multi-directional platformers like Mega Man

Motivation

e Generative Adversarial Networks (GANs) and
Variational Autoencoders (VAEs) have been
used for generating platformer levels and
dungeons via sampling, interpolation and
evolution

* Work with fixed-size inputs and outputs
--- necessitates generation by segment rather
than by level

* Existing methods combine independently

generated segments to form whole levels
* Dungeons with discrete rooms
e Okay but not ideal for Mario
e Multi-directional platformers like Mega Man
 Game blending restricted to segments and
not whole levels

2] 2 2§
e e
YRR ErEr e PR LR R E e R e i e R PP PP

Sarkar, Yang and Cooper, 2019

Motivation

* GANSs and VAEs have been used for generating
platformer levels and dungeons via sampling,

interpol/?’

 Work w
—nec| Generate and blend whole platformer levels progressing in

thanbl multiple directions while still using latent variable models
and their fixed-size inputs/outputs

* Existing

genera
. Dung‘:\
e QOkay but not ideal for Mario
* Multi-directional platformers like Mega Man

* Game blending restricted to segments and
not whole levels

il il - " l'
R R R E e R e Ry E L i R I 1y i v B PP PR (slat)

Sarkar, Yang and Cooper, 2019

Solution

Define
latent state
distributions

* Two-step solution:
 Modify VAE to learn encoding of next segment
rather than current segment
* Train a classifier to predict where next segment

should be placed

VAE (modified), source: jeremyjordan.me

+

Instance
Random Forest _— / N
— Y i Y
A ,O\\:_‘ //O\\‘
\ p/{ \ D ’/
O30 EDED S0EdEBEL b dd dodd
Tree-1 Tree-2 Tree-n
Class-A Class-B Class-B

l

Il\-injoril-\‘-\'oling ;
Final-Class

Random forest classifier

Source: https://community.tibco.com/wiki/random-forest-

template-tibco-spotfire

Solution

* Two-step solution:

Modify VAE to learn encoding of next segment
rather than current segment

* Train a classifier to predict where next segment

should be placed

* Hybrid PCGML model which enables:

Generating arbitrarily long levels via iterative
encoding-decoding of segments

Generating levels that can progress in multiple
directions

Generating blended levels rather than segments

VAE (modified), source: jeremyjordan.me

+

Instance

Random Forest _— |
il v

//,.O \\\\~ /./_,Q‘Q\:\

A PN o BN\
CRAOR AR R
60000060 do0d0SdEO

Tree-1 Tree-2
Class-A Class-B

l

ll\'1a_ioril-\-\'oli11g -

Final-Class

Random forest classifier

/0’\-\

o .
O R ‘&R
000 060

Tree-n

Class-B

Source: https://community.tibco.com/wiki/random-forest-

template-tibco-spotfire

Sequential Segment Generation

* Generative models based on VAEs trained on Super Mario Bros (SMB), Kid Icarus (KI),
Mega Man (MM) and blended SMB-KI domain (implementation details in paper)

Sequential Segment Generation

* Generative models based on VAEs trained on Super Mario Bros (SMB), Kid Icarus (KI),
Mega Man (MM) and blended SMB-KI domain (implementation details in paper)

 Autoencoders are neural nets that learn
lower-dimensional data representations
* Encoder = input data to latent space

* Decoder -2 latent space to latent vector / variables
reconstructed data Vanilla Autoencoder

Decoder

Encoder
Network - - Network

(conv) (deconv)

Sequential Segment Generation

* Generative models based on VAEs trained on Super Mario Bros (SMB), Kid Icarus (KI),

Mega Man (MM) and blended SMB-KI domain (implementation details in paper)

* Autoencoders are neural nets that learn
lower-dimensional data representations
* Encoder = input data to latent space
* Decoder =2 latent space to
reconstructed data

* VAEs make latent space model a probability
distribution (e.g. Gaussian)
* Allows learning continuous latent
spaces
* Enables generative abilities similar to
those of GANs (sampling, interpolation)

Encoder
Network

(conv)

latent vector / variables

Decoder
Network

(deconv)

Vanilla Autoencoder

mean vector

Encoder
Network

(conv)

sampled
latent_vector

N

Ve

Decoder
Network

(deconv)

standard deviation
vector

Variational Autoencoder

Source: kvfrans.com

TR -
R B

Sequential Segment Generation

* VAE Loss function
* Reconstruction error
---error between input segment and reconstruction of input segment
* KL Divergence (between latent distribution and known prior)
---forces latent space to model a continuous, informative distribution

Sequential Segment Generation

* VAE Loss function
e Reconstruction error (modified)
---error between input segment and reconstruction of next input segment
---technically, no longer ‘auto’-encoding, but enables our approach

Standard
Approach

Decoder
Output

VS.

Encoder Input Decoder VS,
Output

Modified
~ Approach

Reconstruction Error Computation

Sequential Segment Generation

Algorithm 1 GenerateLevel(init_segment, n)

Initialize level to init_segment

num_segments = 1

segment = init_segment

while num_segments < n do
z < Encoder(segment)
segment < Decoder(z)
Add segment to level
num_segments += 1

end while

return level

Placement Classification

* To generate levels that can dynamically progress in any direction, need to determine
where/how to place generated segments
e Directional classifier
 Random forest classifier trained on segments from SMB, KI, MM and SMB-KI
domain, labeled with direction of next segment in levels

Instance
Random Forest el e
— | o
> i 1 4 g
L /‘o\\;\ m//__, OQ\\\\ ,//0\:;\

o A B D> N
R OR RN AR
o)) [i / \ / \ /\ A INA I
00006000 S000 S0 VO A AU AS

Tree-1 Tree-2 Tree-n
Class-A Class-B Class-B

|

I Majority-Voting |

Final-Class

Source: https://community.tibco.com/wiki/random-forest-template-tibco-spotfire

Placement Classification

* Input: same segments as before, Label: next direction
 SMB —right only, KI —up only, MM and SMB+KI — both
 70%-30% train-test split
* 100% accuracy for SMB, KI, SMB-KI, 98.73% for MM
* Post-processing after prediction (details in the paper)

Mega Man

Super Mario Bros.

Instance

UP RandomjVJ \ UP
DOWN ;}\ . S > DOWN
LEFT

> \ / \ LEFT

RIGHT Tree-1 Tree-2 Tree-n RIGHT

| Majority-Voting
Final-Class

Placement Classification

* Input: same segments as before, Label: next direction
 SMB —right only, KI —up only, MM and SMB+KI — both
 70%-30% train-test split
* 100% accuracy for SMB, KI, SMB-KI, 98.73% for MM
* Post-processing after prediction (details in the paper)

Mega Man

Super Mario Bros.

Instance

UP RandomjVJ \ UP
DOWN ;}\ . S > DOWN
LEFT

> \ / \ LEFT

RIGHT Tree-1 Tree-2 Tree-n RIGHT

| Majority-Voting
Final-Class

Placement Classification

Algorithm 2 GenerateLevelWithDirs(init_segment, n)

level « GenerateLevel(init_segment, n)
level with dirs « ()
for segment in level do

dir < Classifier(segment)

Add (segment,dir) to level _with_dirs
end for
return level with dirs

Evaluation

* Three-part evaluation
* Continuous nature of generated levels
* Properties of generated blended levels

* Quality of arbitrarily long generated levels

Discontinuity

* To test continuous flow of progression, introduced
Discontinuity metric
* Absolute distance between path tiles along the
adjoining edge of two successive segments
* Lower values = higher continuity between
successive segments
e Range from 0 (high continuity) to 16 (low continuity)

FrErrrrrrrrrrrerer FEErrrrrrrrrerereer

E.qg. Discontinuity = 1

* Levels with better sense of progression would have a
more continuous path through its segmentsi.e. low
values of Discontinuity between successive pairs of "
Segments Hoipipipipisisigisisisigisioiyl (o ofaislis r Fl'i'i'

E.qg. Discontinuity = 3

Discontinuity

* To test continuous flow of progression, introduced
Discontinuity metric
* Absolute distance between path tiles along the
adjoining edge of two successive segments
* Lower values = higher continuity between
successive segments
e Range from 0 (high continuity) to 16 (low continuity)

FrErrrrrrrrrrrerer FEErrrrrrrrrerereer

E.qg. Discontinuity = 1

* Levels with better sense of progression would have a
more continuous path through its segmentsi.e. low
values of Discontinuity between successive pairs of "
Segments Hoipipipipisisigisisisigisioiyl (o ofaislis r Fl'i'i'

E.qg. Discontinuity = 3

Discontinuity

 Computed average per-segment Discontinuity
for 100 generated levels each for SMB, KI, MM
and SMB-KI using 2 methods for generating

segments:
* Sequential: using our algorithm Game, | Sequential | Mependent
. SMB 3.86 + 2.28 5.91 +£2.04
* Independent: successive segments KI 3004250 | 737+ 1.99
independent of each other MM | 6.54+2.63 | 11.18 £ 1.69
SMB-KI 54+ 2.42 9.84 +1.76

* For bOth’ generated segments combined Table 1: Average per-segment Discontinuity values along
usin gcC lassifier with standard deviation. A Wilcoxon Rank Sum Test showed
differences to be significant with p < .001 in all cases.
* Each generated level consisted of 12 segments
for SMB, Kl and SMB-KI and 16 segments for
MM

* Significantly lower discontinuity values using
Sequential for all games

Discontinuity

 Computed average per-segment Discontinuity
for 100 generated levels each for SMB, KI, MM
and SMB-KI using 2 methods for generating

segments:
* Sequential: using our algorithm Game, | Sequential | Mependent
. SMB 3.86 + 2.28 5.91 +£2.04
* Independent: successive segments KI 3004250 | 737+ 1.99
independent of each other MM | 6.54+2.63 | 11.18 £ 1.69
SMB-KI 54+ 2.42 9.84 +1.76

* For bOth’ generated segments combined Table 1: Average per-segment Discontinuity values along
usin gcC lassifier with standard deviation. A Wilcoxon Rank Sum Test showed
differences to be significant with p < .001 in all cases.
* Each generated level consisted of 12 segments
for SMB, Kl and SMB-KI and 16 segments for
MM

* Significantly lower discontinuity values using
Sequential for all games

Example Levels

SMB-S q t. I L [E— ; R I I) F Y

equentia o 7 e
M AMA A

(A A4

st ot A4 4 o

SMB-Independent

At A A d

FrEEF
FEFFEEr 4 4l 4

OO a4

FrErr
I

FEFFFFE

FEErE

il

FIPIPPIPPIIIIN PN

M AL AN A A A

PP P YIS PRIV

A8 444

MM-Sequential MM-Independent Kl-Sequential KI-Independent

Example Blended Levels

Blended SMB-KI-Sequential

Blended SMB-KI-Independent

Blending

* Generated blended SMB-KI levels of 12 segments each

* 6 sets of 100 each with a different starting segment
 Random sample from SMB-KI latent space

. Blend SMB | KI
[J
Or!g!nal SMB segment T =
* Original KI segment SMB-25 4 | 9
* 3 segments interpolated between above 2 2::332 88651 113;’
* SMB-25%,KI-75% SMB-100 | 943 | 57
e Both-50% Random Blend | 43.4 | 56.6
e SMB-75% K|-25% Table 2: Percentage of segments (out of 100x12 = 1200) classi-
V4

fied as SMB-like and KI-like using the directional classifier.

* Evaluated using directional classifier
* Prediction: Right = Segment is more SMB-like
* Prediction: Up = Segment is more Kl-like

Blending

* Generated blended SMB-KI levels of 12 segments each

* 6 sets of 100 each with a different starting segment
 Random sample from SMB-KI latent space

. Blend SMB | KI
[J
Or!g!nal SMB segment T =
* Original KI segment SMB-25 4 | 9
* 3 segments interpolated between above 2 2::332 88651 113;’
* SMB-25%,KI-75% SMB-100 | 943 | 57
e Both-50% Random Blend | 43.4 | 56.6
e SMB-75% K|-25% Table 2: Percentage of segments (out of 100x12 = 1200) classi-
V4

fied as SMB-like and KI-like using the directional classifier.

* Evaluated using directional classifier
* Prediction: Right = Segment is more SMB-like
* Prediction: Up = Segment is more Kl-like

Blending

 Compared generated blended levels with original SMB and Kl levels using tile metrics
* Density (proportion of solid tiles)
* Non-Linearity (unevenness of segment topology)
* Leniency (proxy for difficulty)
» Interestingness (proportion of decorative/collectible items)
* Path-Prop (proportion of path tiles)

(a) Density (b) Non-Linearity (c) Leniency

(d) Interestingness (e) Path-Prop

Figure 2: Per-segment tile metrics for original SMB and KI levels along with different types of blends.

Blending

 Compared generated blended levels with original SMB and Kl levels using tile metrics
* Density (proportion of solid tiles)
* Non-Linearity (unevenness of segment topology)
* Leniency (proxy for difficulty)
» Interestingness (proportion of decorative/collectible items)
* Path-Prop (proportion of path tiles)

(a) Density (b) Non-Linearity (c) Leniency

(d) Interestingness (e) Path-Prop

Figure 2: Per-segment tile metrics for original SMB and KI levels along with different types of blends.

Progression

* Generate arbitrarily long levels without deteriorating quality

* Generated 100 levels of 120 segments each for SMB, KI and SMB-KI and 160
segments each for MM (approx. 10x size of average actual levels)
 Computed average per-segment Discontinuity and tile-based metrics for
each of the 10 subsections of each level
e That s, track if/how these values change as more segments are generated
conditioned on the previous ones

04

03

01

Progression

20
14
3
- 12 B /\\\4' 7 IR s 100
= S E——
10 958
25 ="~ — |
M — — 396 N
AN - —
20 — >
& 9%4
13
5 B 99
3 4 5 3 7 8 9 10 2 3 4) 6 7 3 9 10 1 3 s s 6 7 R 10
——SMIB e K] MM SMBKI —SMB —KI MM SMB+KI —SMB ——KI MM SMB+
(a) Density (b) Non-Linearity (c) Leniency

[

—SMB — K MM SMB+KI

(d) Interestingness

—SMB K| MM SME+

(e) Path-Prop

10

(f) Discontinuity

10

Figure 3: Per-segment metric values plotted for each grouping of 16 segments for MM and each grouping of 12 segments for
the other games. x-axis values indicate 1st such grouping, 2nd such grouping etc. y-axis indicates average metric value for the
corresponding group of segments.

04

03

01

Progression

20
14
3
- 12 B /\\\4' 7 IR s 100
= S E——
10 958
25 ="~ — |
M — — 396 N
AN - —
20 — >
& 9%4
13
5 B 99
3 4 5 3 7 8 9 10 2 3 4) 6 7 3 9 10 1 3 s s 6 7 R 10
——SMIB e K] MM SMBKI —SMB —KI MM SMB+KI —SMB ——KI MM SMB+
(a) Density (b) Non-Linearity (c) Leniency

[

—SMB — K MM SMB+KI

(d) Interestingness

—SMB K| MM SME+

(e) Path-Prop

10

(f) Discontinuity

10

Figure 3: Per-segment metric values plotted for each grouping of 16 segments for MM and each grouping of 12 segments for
the other games. x-axis values indicate 1st such grouping, 2nd such grouping etc. y-axis indicates average metric value for the
corresponding group of segments.

Conclusion

Novel PCGML approach for sequential platformer level generation and blending
Generate arbitrarily-long coherent platformer levels
Generate platformer levels progressing in multiple directions

Blend levels from platformers progressing in different directions

Future Work

Investigate other placement strategies (e.g. heuristics vs. classifier)
Improve generation quality (particularly for Mega Man)
Empirically test generation of left-to-right progressing levels (such as in Ninja Gaiden)

Add controllability of generation beyond choice of initial segment

Future Work

Investigate other placement strategies (e.g. heuristics vs. classifier)
Improve generation quality (particularly for Mega Man)
Empirically test generation of left-to-right progressing levels (such as in Ninja Gaiden)

Add controllability of generation beyond choice of initial segment

Contact

Anurag Sarkar
Northeastern University
sarkar.an@northeastern.edu

