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 Skill chains
* Define the order of player skill
acquisition during gameplay

e Can be used to define level
progressions of varying difficulty
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* Incorporate rating arrays from prior work for dynamic win/loss thresholds
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Algorithm 1 e-greedy matchmaking

Input: all_levels
Output: [evel
level = &
candidates = { levels from all_levels player hasn’t completed or just played in
the previous match }
if random < €1 then
level <— random choice from candidates
else
candidates < remove ineligible levels based on player’s current skills from
candidates
if random < €9 then
level <— random choice from candidates, weighted inversely by number
of playthroughs
else
level 4 best match from candidates, as determined by rating system
comparing player and level ratings
end if
end if
return level




e-Greedy Experiment

* For each game, recruited players using Amazon Mechanical Turk

* Players randomly assigned to one of 4 settings:
* £,=¢€,=0(original DDA model)
* £,=5,=0.1
* £,=¢,=0.2
* g,=¢,=1(random)

e Variables

* Play Time
Levels Completed
Levels Lost

Level Rating Error
* (mean square error between level ratings in matches vs. final level ratings in random condition)



e-Greedy Experiment

e =0.1 (random) had lowest Level Rating Error

€ =0.1and € =0.2 had lower Leve/ Rating Errorthan € = 0 (original model) in both games
Levels Completed not significantly lower for e= 0.1 and €= 0.2 compared to original model
Takeaway: e-greedy approach produces more accurate level ratings compared to the
original model while still performing useful level assignment for matchmaking

[owa James

Variable e =0 (orig.)|[e =0.1| e = 0.2 |e = 1 (random)
Play Time (p = .56) 224.75 246.1 347.58 510.97
Levels Completed (p = .03) 2 1ab [ ° 0°
Levels Lost (p = .15) 3 3 4.5 -
Level Rating Error (p < .01)[ 207.3% |162.45° |176.61%° 93.64°
Paradox
Variable e = 0 (orig.)|e =0.1]e = 0.2]e = 1 (random)
Play Time (p = .51) 653.08 620.24 | 290.62 749.07
Levels Completed (p < .01) 4 4 3.5¢ 1°
Levels Lost (p = .14) 2 | 2 2
Level Rating Error (p < .01)| 181.56% |126.87° | 88.81°¢ 73.22¢




Single Level Rating

Rating Arrays
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Rating Array Experiment
Players recruited using Mechanical Turk, but only used Paradoxfor this experiment
Two conditions — rating arrays and no rating arrays (single rating per level)
Used € = 0.1 since this had best results in prior experiment
Variables — Play Time, Levels Completed, Levels Lost

Tracked high score for each of the 19 non-tutorial levels



Rating Array Experiment

 Significantly more Levels Completed in the array condition

* High score evaluation for 19 non-tutorial levels:
* Array > Non-Array: 5
* Non-Array > Array: 8
* Tie: 6 (in each case, array found high score in fewer matches)
e Differences in high scores not significant (p =.5)

* Takeaway: Rating arrays leads to players completing more levels while producing
similar high scores as no-array condition

Variable Array [ No-Array
Play Time (p = .3) 529.16| 411.39
Levels Completed (p < .01)| 4¢ 3P
Levels Lost (p = .77) 2 2




Conclusion

 We presented an online version of an existing DDA system for HCGs
* Using e-greedy matchmaking helped address cold-start issues related to level ratings

 Demonstrated first online use of rating arrays which led to players completing more levels



Future Work

e Automatically infer skill chains
* Probabilistic modeling of player skill acquisition

* Test rating arrays with other HCGs as well as educational games
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