An Online System for Player-vs-Level Matchmaking in Human Computation Games

Anurag Sarkar and Seth Cooper

Northeastern University

Background

• Human computation games (HCGs) model real world problems to help solve them through players

Foldit

Paradox

Background

- Human computation games (HCGs) model real world problems to help solve them through players
- Prior works did dynamic difficulty adjustment (DDA) in HCGs using rating systems and skill chains, framing DDA as PvL matchmaking
 - Player rating \rightarrow player ability
 - Level rating \rightarrow level difficulty

Background

- Human computation games (HCGs) model real world problems to help solve them through players
- Prior works did dynamic difficulty adjustment (DDA) in HCGs using rating systems and skill chains, framing DDA as PvL matchmaking
 - Player rating \rightarrow player ability
 - Level rating \rightarrow level difficulty
- Skill chains
 - Define the order of player skill acquisition during gameplay
 - Can be used to define level progressions of varying difficulty

DDA Model

- Two step DDA process:
 - Skill Chain determine set of eligible levels based on player's acquired skills and skills required by levels
 - Rating System from among the eligible levels serve the best match

DDA Model

- Problems
 - To avoid cold-start, requires collecting level ratings via random playthroughs in prior off-line phase and keep them fixed during on-line matchmaking phase
 - --- updating online creates skewed distribution of harder levels mainly being attempted by advanced players

DDA Model

- Problems
 - To avoid cold-start, requires collecting level ratings via random playthroughs in prior *off-line* phase and keep them fixed during *on-line* matchmaking phase
 - --- updating online creates skewed distribution of harder levels mainly being attempted by advanced players

• Each level requires a target score threshold for determining win/loss fixed across all players

Approach

- Two extensions to DDA model:
 - ε-greedy matchmaking to address cold-start issue with level ratings
 - Incorporate rating arrays from prior work for dynamic win/loss thresholds

Approach

- Two extensions to DDA model:
 - ε-greedy matchmaking to address cold-start issue with level ratings
 - Incorporate rating arrays from prior work for dynamic win/loss thresholds

• Games

lowa James

Algorithm 1 ϵ -greedy matchmaking

Input: all_levels Output: level $level = \emptyset$ $candidates = \{ levels from all_levels player hasn't completed or just played in$ $the previous match <math>\}$ if $random < \epsilon_1$ then $level \leftarrow$ random choice from candidateselse

 $candidates \leftarrow$ remove ineligible levels based on player's current skills from candidates

```
if random < \epsilon_2 then
```

 $level \leftarrow$ random choice from candidates, weighted inversely by number of playthroughs

else

 $level \leftarrow$ best match from candidates, as determined by rating system comparing player and level ratings

end if

end if

return *level*

ε-Greedy Experiment

- For each game, recruited players using Amazon Mechanical Turk
- Players randomly assigned to one of 4 settings:
 - $\varepsilon_1 = \varepsilon_2 = 0$ (original DDA model)
 - $\varepsilon_1 = \varepsilon_2 = 0.1$
 - $\varepsilon_1 = \varepsilon_2 = 0.2$
 - $\varepsilon_1 = \varepsilon_2 = 1$ (random)
- Variables
 - Play Time
 - Levels Completed
 - Levels Lost
 - Level Rating Error
 - (mean square error between level ratings in matches vs. final level ratings in random condition)

ε-Greedy Experiment

- ε = 0.1 (random) had lowest *Level Rating Error*
- $\varepsilon = 0.1$ and $\varepsilon = 0.2$ had lower *Level Rating Error* than $\varepsilon = 0$ (original model) in both games
- *Levels Completed* not significantly lower for $\varepsilon = 0.1$ and $\varepsilon = 0.2$ compared to original model
- Takeaway: ε-greedy approach produces more accurate level ratings compared to the original model while still performing useful level assignment for matchmaking

Towa Junies					
Variable	$\epsilon = 0$ (orig.)	$\epsilon = 0.1$	$\epsilon = 0.2$	$\epsilon = 1$ (random)	
Play Time $(p = .56)$	224.75	246.1	347.58	510.97	
Levels Completed $(p = .03)$	2^a	1^{ab}	1^{ab}	0 ^b	
Levels Lost $(p = .15)$	3	3	4.5	4	
Level Rating Error $(p < .01)$	207.3 ^{<i>a</i>}	162.45 ^b	176.61 ^{<i>ab</i>}	93.64 ^c	
Paradox					
Variable	$\epsilon = 0$ (orig.)	$\epsilon = 0.1$	$\epsilon = 0.2$	$\epsilon = 1 \text{ (random)}$	
Play Time $(p = .51)$	653.08	620.24	290.62	749.07	
Levels Completed $(p < .01)$	4^a	4^a	3.5 ^a	1 ^b	
Levels Lost $(p = .14)$	2	1	2	2	
Level Rating Error $(p < .01)$	181.56 ^a	126.87 ^b	88.81 ^c	73.22^{d}	

Iowa James

Rating Arrays

Rating Array Experiment

- Players recruited using Mechanical Turk, but only used *Paradox* for this experiment
- Two conditions rating arrays and no rating arrays (single rating per level)
- Used $\varepsilon = 0.1$ since this had best results in prior experiment
- Variables *Play Time, Levels Completed, Levels Lost*
- Tracked high score for each of the 19 non-tutorial levels

Rating Array Experiment

- Significantly more *Levels Completed* in the array condition
- High score evaluation for 19 non-tutorial levels:
 - Array > Non-Array: 5
 - Non-Array > Array: 8
 - Tie: 6 (in each case, array found high score in fewer matches)
 - Differences in high scores not significant (p = .5)
- Takeaway: Rating arrays leads to players completing more levels while producing similar high scores as no-array condition

Variable	Array	No-Array
Play Time $(p = .3)$	529.16	411.39
Levels Completed $(p < .01)$	4^a	3 ^b
Levels Lost $(p = .77)$	2	2

Conclusion

• We presented an online version of an existing DDA system for HCGs

• Using ε-greedy matchmaking helped address cold-start issues related to level ratings

• Demonstrated first online use of rating arrays which led to players completing more levels

Future Work

• Automatically infer skill chains

• Probabilistic modeling of player skill acquisition

• Test rating arrays with other HCGs as well as educational games

Future Work

• Automatically infer skill chains

• Probabilistic modeling of player skill acquisition

• Test rating arrays with other HCGs as well as educational games

Contact Anurag Sarkar Northeastern University sarkar.an@northeastern.edu