Ordering Levels in Human Computation Games using Playtraces and Level Structure

Anurag Sarkar and Seth Cooper

Northeastern University

Background

• Human computation games (HCGs) model real world problems to help solve them through players

Foldit

Iowa James

Background

- Human computation games (HCGs) model real world problems to help solve them through players
- Prior works did dynamic difficulty adjustment (DDA) in HCGs using rating systems, framing DDA as PvL matchmaking
 - Player rating \rightarrow player ability
 - Level rating \rightarrow level difficulty

Background

- Human computation games (HCGs) model real world problems to help solve them through players
- Prior works did dynamic difficulty adjustment (DDA) in HCGs using rating systems, framing DDA as PvL matchmaking
 - Player rating \rightarrow player ability
 - Level rating \rightarrow level difficulty

- Skill chains
 - Define the order of player skill acquisition during gameplay
 - Can be used to define level progressions of varying difficulty

DDA Model

- Two step DDA process:
 - Skill Chain determine set of eligible levels based on player's acquired skills and skills required by levels
 - Rating System from among the eligible levels serve the best match

Problem: Authorial Burden

• Problem:

The use of skill chains requires significant manual authoring

--- A skill chain must be defined for a given game

--- Each level in the game must be annotated with the set of individual skills required to complete that level

Skills: navigating, hazard_static, hazard_timed

Approach

- Two approaches to ordering levels:
 - Compare levels' relative proportions of similar action-context pairs in playtrace data
 - Compare levels' similarity of level structures based on K-means clustering
 - Three-part evaluation
 - Determine best playtrace-based ordering
 - Determine best clustering-based ordering
 - Compare two new methods with existing method and random baseline

Approach

- Two approaches to ordering levels:
 - Compare levels' relative proportions of similar action-context pairs in playtrace data
 - Compare levels' similarity of level structures based on K-means clustering
 - Three-part evaluation
 - Determine best playtrace-based ordering
 - Determine best clustering-based ordering
 - Compare two new methods with existing method and random baseline

Iowa James

Action-Context Pairs in Playtraces

- Sequences of action-context pairs in playtraces of player wins vs levels
- Pairs were (action, context) 2-tuples
 - Action: Left, Right, Jump, Wrong Item
 - Context: Length-6 bitstring indicating presence/absence of game elements in 10tile neighborhood of player
- Playtrace data gathered using Mechanical Turk
 - 60 Players
 - Levels served at random
 - Logged trajectory of time-ordered actioncontext pairs during playthrough
 - Filtered out losing trajectories

Action-Context Pair: (Jump, <101101>)

<Ground, Moving Platform, Item, Spikes, Timed Spikes, Star>

Action-Context Pairs in Playtraces

- For each level, determine the set of unique action-context pairs that appear in a threshold percentage of winning trajectories
- For level ordering, for each pair of levels A and B
 - Consider each action-context pair as a skill
 - A comes before B if
 - --- % of A's skills in B > % of B's skills in A

Level A: {navigating} Level B: {navigating, platforming}

100% of A's skills required by B 50% of B's skills required by A

Action-Context Pairs in Playtraces

• Obtain a level ordering graph after processing all pairs

- To determine percentage threshold, generated orderings for thresholds=10, 20, ... 100%
 - Used our knowledge of the game to judge goodness of generated orderings
 - Lower thresholds → graphs closer to expectation
 - Used 10% (PT-10) and 20% (PT-20) for experiment

Action-Context Pairs Experiment

- 111 players recruited through Mechanical Turk
- Players randomly assigned to one of the 2 orderings:
 - PT-10 (10% thresholding)
 - PT-20 (20% thresholding)
- Variables
 - Levels Completed
 - Total Matches

Variable	PT-10 (n=59)	PT-20 (n=52)
Levels Completed $(p = .039)$	2	1
Total Matches $(p = .24)$	6	5.5

Clustering

- Applied K-means clustering on 16x16 segments extracted from all 50 levels
- Clusters represent groups of segments that have similar level structures
- For each level, assign length-k bitstring indicating clusters that contain at least 1 segment from that level
- For ordering, for each pair of levels A and B
 - A comes before B if A's cluster memberships form a subset of B's cluster memberships

Clustering

- After processing all level pairs, obtain a level ordering graph
- To determine value of k to use, generated orderings for k=1 to 20
 - Use knowledge of the game to judge goodness of orderings
 - Prefer deeper over shallower graphs
 - Lower values of k → flatter, broader graphs due to fewer clusters leading to more levels having similar cluster memberships
 - Tested k=6 (KM-6) and k=20 (KM-20) in the following experiment

Clustering Experiment

- 113 players recruited through Mechanical Turk
- Players randomly assigned to one of the 2 orderings:
 - KM-6 (6 clusters)
 - KM-20 (20 clusters)
- Variables
 - Levels Completed
 - Total Matches

Variable	КМ-6 (n=55)	KM-20 (n=58)
Levels Completed $(p = .52)$	1	2
Total Matches $(p = .9)$	6	6

Evaluation

- Recruited 335 players using Mechanical Turk
- Players randomly assigned to one of the 4 orderings:
 - RAND randomly serve a level yet to be completed
 - SKILL use prior DDA system
 - KM-20 20 cluster-based ordering
 - PT-10 10% thresholding playtrace-based ordering
- Variables
 - Levels Completed
 - Total Matches
 - Correct Items
 - Incorrect Items
 - Highest Level Rating

Evaluation

	RAND	SKILL	KM-20	PT-10
Variable	(n=78)	(n=96)	(n=85)	(n=76)
Levels Completed $(p < .01)$	1^a	2 ^b	2 ^b	2 ^b
Total Matches $(p = .77)$	8	6	6	6
Correct Items $(p = .052)$	7.5^{a}	9.5 ^{<i>ab</i>}	8^{ab}	14 ^b
Incorrect Items $(p = .33)$	7	6	6	7.5
Highest Level Rating $(p < .01)$	1496 ^a	1669 ^b	1669 ^b	1854 ^c

• Takeaways

--- Significant differences for Levels Completed, Correct Items, Highest Level Rating

--- New KM-20 and PT-10 orderings allowed players to complete a similar amount of levels as prior SKILL method while reducing authorial load

--- PT-10 (playtrace) allowed players to complete significantly harder levels

--- KM-20 (clustering) does not outperform SKILL or PT-10 but requires least manual input while not doing any worse

Future Work

• Apply on other types of HCGs

• Learn progressions for educational games

• Context relationships subsets

Future Work

• Apply on other types of HCGs

• Learn progressions for educational games

• Context relationships subsets

Contact Anurag Sarkar Northeastern University sarkar.an@northeastern.edu