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DDA Model

I::-I'.I'- zalmg -:>

/:-__'__r?] rpl Vs, -
f‘,_’f\ jl_ _1: ?‘*T,::-a &y 2
* Two step DDA process: ,L'/ o1 e
1 TIEL
 Skill Chain - determine set of eligible Get eligible levels Among eligible levels,
levels based on player’s acquired skills and USITg P:aﬁrland pick one to serve
. . evel sKILLS 1 i
skills required by levels using player rating
* Rating System — from among the eligible O ‘l'
levels serve the best match am s [ Chosen level J
Player l

Match
outcome

Update player
skills and rating




Problem: Authorial Burden

* Problem:
The use of skill chains requires significant manual authoring
--- A skill chain must be defined for a given game

--- Each level in the game must be annotated with the set of individual skills required
to complete that level

Skills: navigating, hazard static, hazard timed



Approach

 Two approaches to ordering levels:
 Compare levels’ relative proportions of similar action-context pairs in playtrace data
 Compare levels’ similarity of level structures based on K-means clustering
* Three-part evaluation
 Determine best playtrace-based ordering
* Determine best clustering-based ordering
 Compare two new methods with existing method and random baseline
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Action-Context Pairs in Playtraces

e Sequences of action-context pairs in playtraces
of player wins vs levels

* Pairs were (action, context) 2-tuples #

* Action: Left, Right, Jump, Wrong ltem

* Context: Length-6 bitstring indicating
presence/absence of game elements in 10-
tile neighborhood of player

* Playtrace data gathered using Mechanical Turk
* 60 Players

e Levels served at random
* Logged trajectory of time-ordered action-

context pairs during playthrough Action-Context Pair: (Jump, <101101>)
* Filtered out losing trajectories

<Ground, Moving Platform, Item, Spikes, Timed Spikes, Star>



Action-Context Pairs in Playtraces

* For each level, determine the set of unique action-context pairs that appearin a
threshold percentage of winning trajectories

* For level ordering, for each pair of levels A and B
* Consider each action-context pair as a skill
* A comes before B if
--—- % of A’s skillsin B > % of B’s skills in A

Level A: {navigating} °

Level B: {navigating, platforming} >

100% of A’s skills required by B

50% of B’s skills required by A G



Action-Context Pairs in Playtraces

e Obtain a level ordering graph after
processing all pairs

* To determine percentage threshold,
generated orderings for thresholds=10,
20, ... 100%

e Used our knowledge of the game to
judge goodness of generated
orderings

* Lower thresholds = graphs closer to
expectation

e Used 10% (PT-10) and 20% (PT-20) for
experiment




Action-Context Pairs Experiment

* 111 players recruited through Mechanical Turk

* Players randomly assigned to one of the 2 orderings:

e PT-10 (10% thresholding)
e PT-20 (20% thresholding)

e Variables
* [evels Completed
o Jotal Matches

Variable PT-10 (n=59)|PT-20 (n=52)
Levels Completed (p = .039) 2 ]
Total Matches (p = .24) 6 3.5




Clustering

Applied K-means clustering on 16x16 segments extracted from all 50 levels
Clusters represent groups of segments that have similar level structures

For each level, assign length-k bitstring indicating clusters that contain at least 1
segment from that level

For ordering, for each pair of levels A and B
* A comes before B if A’s cluster memberships form a subset of B’s cluster
memberships

E.g. k=3, A={100}, B={101} and C ={110} a

Level A: {100}
Level B: {101}

Level C: {110} > G G




Clustering

» After processing all level pairs, obtain a level ordering graph

* To determine value of k to use, generated orderings for k=1 to 20
* Use knowledge of the game to judge goodness of orderings
* Prefer deeper over shallower graphs
* Lower values of k = flatter, broader graphs due to fewer clusters leading to more levels
having similar cluster memberships
* Tested k=6 (KM-6) and k=20 (KM-20) in the following experiment




Clustering Experiment

e 113 players recruited through Mechanical Turk

* Players randomly assigned to one of the 2 orderings:
 KM-6 (6 clusters)
e KM-20 (20 clusters)

* Variables
* [evels Completed

Jotal Matches

Variable

KM-6 (n=3)5)

KM-20 (n=58)

Levels Completed (p = .52)

I

2

Total Matches (p = .9)

6

6




Evaluation
e Recruited 335 players using Mechanical Turk

* Players randomly assigned to one of the 4 orderings:
* RAND —randomly serve a level yet to be completed
* SKILL — use prior DDA system
e KM-20 - 20 cluster-based ordering
* PT-10 - 10% thresholding playtrace-based ordering

e Variables

* [evels Completed
Jotal Matches
Correct Items
Incorrect [tems
Highest Level Rating



Evaluation

RAND | SKILL |KM-20(PT-10

Variable (n=78)| (n=96) | (n=83) | (n=76)
Levels Completed (p < .01) ¢ 2° 2° 29
Total Matches (p = .77) 8 6 6 6
Correct Items (p = .052) 7.5% | 954 | §eP 14°
Incorrect Items (p = .33) 7 6 6 7.5

Highest Level Rating (p < .01)[ 1496 | 1669° | 1669° | 1854¢

* Takeaways

--- Significant differences for Levels Completed, Correct Items, Highest Level Rating
--- New KM-20 and PT-10 orderings allowed players to complete a similar amount of
levels as prior SKILL method while reducing authorial load

--- PT-10 (playtrace) allowed players to complete significantly harder levels

--- KM-20 (clustering) does not outperform SKILL or PT-10 but requires least manual
input while not doing any worse



Future Work

* Apply on other types of HCGs
* Learn progressions for educational games

* Context relationships subsets
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