
Desire Path-Inspired Procedural Placement of Coins in a Platformer Game

Anurag Sarkar, Varun Sriram, Riddhi Padte, Jeffrey Cao, Seth Cooper
Northeastern University, Boston, Massachusetts, USA

{sarkar.an, sriram.v, padte.r}@husky.neu.edu, jhccao@gmail.com, scooper@ccs.neu.edu

Abstract

Many games feature collectible items that are manually
placed by a designer. In this work, we developed an algo-
rithm, inspired by desire paths, for automatically placing col-
lectible coins in a platformer game. Desire paths are paths
naturally formed where people walk, rather than those laid
down artificially, and are often the shortest or easiest route
between an origin and destination. Our algorithm uses player
trajectories to find paths along which to place the coins
for each level. We ran an experiment comparing path-based
placement to other placement methods. Although we did not
find a difference in total time spent playing or likelihood of
finishing the game, our results suggest that path-based place-
ment leads to players collecting more coins in less time than
with designer or randomly placed coins. Further, we found
that players played similarly when coins were either path-
based or there were no coins, and similarly when coins were
either placed by a designer or randomly.

Introduction
Many games have levels containing collectible items (such
as coins, bonuses, or power-ups) that may serve different
purposes within the game. Often, collecting these items is
a secondary objective, either related or unrelated to some
primary objective (such as completing the level). Thus, au-
tomating the placement of such level elements via procedu-
ral methods could save the designer’s time in authoring the
level by allowing the designer to focus on the primary goals
of the level, and then automatically adding collectibles after
the level has been designed.

However, previous work by Andersen et al. (2011b) has
shown that placing such secondary objectives within levels
may decrease engagement if the placing is not done in a
manner that serves the primary objective of the levels. That
is, to be effective and not cause any side effects detrimental
to player experience, such procedural placement algorithms
should take into account the level’s primary objective and
how the player achieves that goal.

Platformer games usually consist of levels where the pri-
mary objective is to traverse through a sequence of platforms
and hazards to reach some goal at the end of the level. For

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A real-world desire path: the small dirt path lead-
ing to the crosswalk.

levels where there are multiple paths from start to finish, ab-
sent other objectives, some types of players may prefer to
quickly achieve progress by following the path that is short-
est or easiest to traverse, i.e. a path that allows them to com-
plete the level quickly while having to contend with rela-
tively few hazards (Bartle 1996; Yee 2007). Note that such
paths may not necessarily be enforced by the level’s design
but may be discovered after multiple playthroughs of a level.

In nature, paths that are created organically by the footfall
of people where they naturally tend to walk, rather than by
artificial construction, are called desire paths. These paths
usually represent a shortcut or a route that is less circuitous
than a constructed sidewalk or other walkway. An example
is shown in Figure 1. Borrowing this concept for platform-
ers, we use desire paths to refer to the paths through a level
that players are likely to traverse on account of being sim-
ple, direct routes from start to goal. Thus, placing secondary
level elements, such as collectibles, along these paths may
help circumvent the issues associated with their placement.

In this work, we extracted such desire paths for each
level in the platformer game Iowa James: Treasure Hunter
(screenshots shown in Figure 2) using player trajectories and
placed collectible coins along these paths. We compared the
path-based method of coin placement with coins placed by
a designer, with coins placed randomly, and with levels hav-
ing no collectible coins. Our findings indicate that placing

Figure 2: Examples of Iowa James on his adventures.

coins along paths leads to players collecting more coins in
less time than with designer or randomly placed coins. When
compared to having no coins, designer placed coins led to
fewer levels being completed with more time spent in each
level, while we did not find such differences for path-placed
coins. Overall, we found no differences in player behavior
when coins were placed along paths or when there were no
coins. Similarly, we found no differences in player behavior
when coins were placed manually by a designer or placed
randomly, indicating that in some cases it may be possible to
save designer time simply by placing collectibles randomly.

Related Work
Desire paths in design. While most often directly used in
the context of urban planning, desire paths have received
attention in more general design as representative of what
people actually do rather than what designers might prefer
or expect (Kohlstedt 2016). Desire paths have been used as
a metaphor in areas like product design (Myhill 2004), soft-
ware interaction design (Zhang, Padman, and Levin 2014),
and more general social behaviors (Nichols 2014).

Secondary Game Objectives. Secondary objectives form
a fundamental component in the design of many games. Ini-
tial work by Andersen et al. (2011a) found that the inclusion
of secondary objectives, such as coins, could negatively im-
pact engagement. However, further work (Andersen et al.
2011b) found that secondary objectives that supported the
game’s main objective could positively impact player behav-
ior. Specifically, placing coins along the main path through
levels in a platform game led to players completing more
levels and spending more time playing than having off-path
coins in the levels. This informed our use of player trajecto-
ries through levels to procedurally determine desirable paths
for levels and place coins along these paths.

Procedural Content Generation. Procedural content
generation (PCG) (Shaker, Togelius, and Nelson 2016) may
be defined as the process of automatically creating content
using procedural or algorithmic techniques. Different types
of such methods—e.g. search-based techniques (Togelius
et al. 2011) or constraint satisfaction (Smith and Mateas
2011)—have found widespread use in the generation of a va-
riety of game content, such as platformer levels (Snodgrass

and Ontañón 2014), action-adventure missions (Dormans
2010), strategy game maps (Liapis, Yannakakis, and To-
gelius 2013a), and space shooter weapons (Hastings, Guha,
and Stanley 2009). One of the primary motivations, among
many, for such procedural techniques is to assist or save the
designer’s time in authoring game content (Smith 2014b).
While much PCG work focuses on generating entire levels,
in our work, we focus on placing collectibles within existing
levels. By automating the design or creation of secondary
or tertiary game artifacts, the designer can then focus more
thoroughly on the principal components of a game’s design.

Data-Driven PCG. Smith (2014a) defines a data-driven
PCG system as one that “uses external data to inform
the generation of content.” Data-driven approaches have
found wide use for player modeling. Zook et al. (2012)
use data-driven player models for generating missions while
Zook and Riedl (2012) do so for dynamic difficulty ad-
justment. Closer to our work is that of Pedersen, Togelius,
and Yannakakis (2010) who build data-driven player mod-
els, which can then be utilized to inform level design. Simi-
larly, Jennings-Teats, Smith, and Wardrip-Fruin (2010) used
players playing through platformer level chunks to train a
model of player experience rather than craft one by hand.
The model was then used to generate platformer levels of de-
sired difficulty. Such work falls more squarely in the field of
PCGML (Summerville et al. 2017), where generative mod-
els trained on existing game data are used for creating new
content. Our data-driven model differs from most traditional
models in that rather than having a model of each individ-
ual player, we utilize a model of player movement with all
players considered in aggregate. More recently, data-driven
approaches have been applied not just to inform level design,
but to generate entire adventure games (Barros, Liapis, and
Togelius 2016).

Mixed-Initiative PCG. While purely automated content
generation systems are useful, we often require procedu-
ral systems that afford authorial control during generation.
These systems enable a human designer to guide the PCG
system towards content with certain desired properties. Such
systems are categorized as mixed-initiative PCG since they
combine the creativity and judgment of a human designer
with the ability of a generative system to quickly produce
a large amount of output. Smith, Whitehead, and Mateas
(2011) developed the mixed-initiative generator Tanagra,
which uses reactive planning and constraint satisfaction to
create 2D platformer levels that a human designer can then
edit. Smith et al. (2011) also created the Launchpad level
generator, which uses a grammar-based method and the no-
tion of rhythm groups to generate playable platformer levels
that the designer can then tune to define player paths through
the level as well as frequency of level components. Similarly,
Shaker, Shaker, and Togelius (2013) created Ropossum, a
level generator for Cut the Rope that takes into account de-
signer input. Another such system, Sentient Sketchbook (Li-
apis, Yannakakis, and Togelius 2013b), generates playable
levels from simple maps sketched out by a human designer.
Baldwin et al. (2017) also described a mixed-initiative sys-
tem that uses game design patterns to create dungeons using
genetic algorithms. Our coin placement algorithm can con-

Inputs: The inputs to the coin placement algorithm are the number of coins to
place, grid cell definition, starting and ending locations, and list of player trajec-
tories from players who won the level.

Step 1: For each grid cell c = (xc, yc), count the proportion wc of winning tra-
jectories that pass through that cell. Thus, if no winning trajectory went through
a cell, wc = 0 and if all winning trajectories went through a cell wc = 1.

Step 2: Find the lowest cost path through the grid (via A*) from the starting grid
cell to the ending grid cell. It is possible to move to any 8-connected neighbor,
and the cost to move from grid cell s to t is |t−s|

max(wt,ε)2
, where ε is some small

number.

Step 3: Place the required number of coins evenly spaced along the path.

Step 4: For each grid cell pi along the path, compute a priority value ri, using an
estimate of the local deviation from a straight line as ri = |pi − 0.5 ∗ (pi−1 +
pi+1)|2 + |pi − 0.5 ∗ (pi−2 + pi+2)|.

Step 5: Given a coin at pi, if ri+1 > ri and there is no coin at pi+1 or pi+2,
move the coin to pi+1; or if ri−1 > ri and there is no coin at pi−1 or pi−2, move
the coin to pi−1. Iterate through all coins, moving each if needed, until no coin
moves.

Outputs: The algorithm outputs a list of coin locations.

Figure 3: Steps in the coin placement algorithm. |v| denotes vector magnitude.

stitute a part of a mixed-initiative PCG system such as the
ones above since the coin placement is automated while the
remainder of each level is hand-authored.

Game and Recruitment
For this work, we used a platformer game we developed in
Unity called Iowa James: Treasure Hunter (Figure 2). The
player controls an avatar that can move and jump. The goal is
to navigate a level to reach a treasure chest at the end. Upon
reaching the chest, the player wins the level and moves on
to the next one. There are several types of hazards that can
be encountered along the way, including pits, spikes, timed
retracting spikes, and moving spike balls. The player dies
upon touching a hazard and starts the current level over from
the beginning. The player has unlimited lives, so the only
way to lose the game is to stop playing.

The game has 14 levels that cover a variety of layouts and
usually contain several ways to navigate from the start to
the goal. The first level is meant to be a simple introductory
level. If the player completes all the levels, they are taken
to a game over screen. The game also features collectible
coins, which the player can collect by touching. Each level
contains 10 coins. A UI element displays how many coins
out of the total possible the player has collected so far in
the level. If the player restarts a level due to encountering a
hazard, the coins they had collected so far remain collected.
The coins do not have any effect on gameplay.

To recruit players, we posted Human Intelligence Tasks
(HITs) on Amazon Mechanical Turk (MTurk). Prior work
has shown that players recruited through MTurk respond
similarly to game design experiments as volunteer players
do (Sarkar and Cooper 2018). The HIT was titled Platformer
Game with the description Play a platformer game! Run and
jump to collect treasure at the end of each level! and paid
$0.50. The HIT provided the payment code upfront, thus not
requiring the game to be played at all for payment. Hence,
any time spent playing the game on the HIT could be consid-
ered voluntary. We found that three-quarters of people who
accepted the HIT, went on to play the game, with the rest
simply taking the payment and not playing. Before play-
ing, players were given a short set of instructions on how to
play. To ensure that the same information could be provided
across different versions of the game, there was no mention
of coins in the HIT details or instructions.

Path Coin Placement
The coin placement algorithm we developed generates coin
locations in a level based on winning player trajectories. The
algorithm places coins based on grid cells; in this work, we
used a tile-based game and each tile was a grid cell. The
algorithm takes as inputs the number of coins to place, the
grid cell definition, starting and ending locations, and a list
of player trajectories from players who won the level. Note
that the algorithm does not know which grid cells are im-
passible to the player (although this could be incorporated),
instead relying on player paths to determine where the player
can go. The output is a list of coin locations.

An illustrated overview of the algorithm is shown in Fig-
ure 3. We used several heuristics to guide this coin place-
ment. The main heuristic we used was:
• Coins should be on a single path through the level; the

path should have been traversed by successful players
(Steps 1 and 2). This is motivated by the work of An-
dersen et al. (2011b).

We used additional heuristics that were based on our subjec-
tive experience from playing games with collectible coins.
It is possible other heuristics could work just as well or bet-
ter (for example, simply placing coins randomly along the
path). We consider further study of such additional heuris-
tics as future work.
• Coins should be well distributed throughout the level

(Step 3). This is motivated by making it more likely for
players to have coins to collect all along the path through
the level.
• Coins should be clustered near curves and arcs in the path

(Steps 4 and 5). This is motived by the groupings of coins
in games such as Super Mario Bros.
To gather player trajectories, we ran a HIT that recruited

200 participants through MTurk, of which 160 played the
game. The version of the game used to gather trajectories
had no coins or associated UI. In order to distribute plays
across the levels, after the introductory level, the remaining
levels were served to players in a random order. In this HIT,
we gathered trajectory data from players at high temporal
resolution (10 Hz) and filtered out winning trajectories with
missing events, as well as gaps within individual winning
trajectories. For the introductory level, which was served to
all players, we used 77 winning trajectories for coin place-
ment. For the remaining levels, we used from 8 to 22 win-
ning trajectories for coin placement. The data from this HIT
was only used for coin placement, and was not used for the
evaluation described below.

Experiment
To evaluate different coin placement methods, we ran a sec-
ond HIT that recruited 1600 participants through MTurk, of
which 1226 played the game. In the versions of the game
used in this experiment, levels were served in a fixed or-
der. To place levels in rough order of increasing difficulty,
the ordering was based on the player success rate from the
previous HIT, with levels having lower success rates placed
later in the order.

Players were randomly assigned into one of four versions
of the game with different coin placement, based on the fol-
lowing conditions:
• NONE: No coins were in the game. The coin count was

hidden from the UI.
• PATH: Coins were placed using the path coin placement

algorithm described above and depicted in Figure 3.
• DSGN: Coins were placed manually by a game designer

working with our research group. We asked the designer
to place the coins wherever he wanted, as long as the
coins were reachable by the player. The designer spent
around 4 hours placing coins.

PATH DSGN RAND

Figure 4: Examples of coin placement for each method used in the experiment.

NONE PATH DSGN RAND

Levels Won† 5a 4ab 4bc 3c

Finish Rate (%) 8 10 6 6
Total Time (s) 224 216 226 174
Per-Level Time (s)† 38a 37a 47b 41ab

Total Coins† 38a 25b 26b

Per-Level Coins† 8a 6b 6b

Table 1: Summary of data and statistical analysis. Medi-
ans are given, except for Finish Rate. A significance level
of α = .05 was used. Daggers† show significant omnibus
tests. Superscriptsabc show significance groups in post-hoc
tests; i.e, conditions that share a superscript were not sig-
nificantly different. Significant comparisons had p < .001,
except for the post-hoc comparisons in Levels Won: NONE–
DSGN, p = .003, and RAND–PATH, p = .031, and Per-Level
Time: NONE–DSGN, p = .009.

• RAND: Coins were placed randomly in any cell that had at
least one winning trajectory pass through it. In this condi-
tion, each player had the coins placed in different random
locations.

Examples of coins placed by each method for one level of
the game are shown in Figure 4. Of the 1226 participants
who played the game, 209 were randomly assigned to NONE,
391 to PATH, 318 to DSGN and 308 to RAND. For each
player, we measured the following variables:
• Levels Won: The number of levels won by the player.
• Finish Rate: 1 if the player finished the game (completed

all 14 levels), else 0. Presented in Table 1 as percentage
of players per condition who finished with value 1.
• Total Time: The total time the player spent playing the

game, in seconds.
• Per-Level Time: The mean time the player spent playing

each level attempted, in seconds.
• Total Coins: The total number of coins collected by the

player.
• Per-Level Coins: The mean number of coins collected by

the player in each level attempted.
For statistical analysis, data were not normally distributed

as determined by a Shapiro-Wilk normality test. We thus ran
an omnibus Kruskal-Wallis test for each variable, and if sig-
nificant, ran post-hoc pairwise Wilcoxon rank sum tests with
the Holm correction. For the variables looking at coins (Per-
Level Coins and Total Coins), we did not include the condi-

0	

20	

40	

60	

80	

100	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	

Pe
rc
en

ta
ge
	o
f	P

la
ye
rs
	

Levels	Won	

NONE

PATH

DSGN

RAND

Figure 5: Survival plot showing the percentage of play-
ers who won a given number of levels. Note that although
PATH and DSGN have the same median value for Levels
Won, the distributions are different.

tion with no coins (NONE) in the analysis. A summary of the
results of our analyses is given in Table 1. A survival plot for
Levels Won is shown in Figure 5.

Discussion
In terms of coin collection, we found that players collected
more coins in PATH than in DSGN and RAND. This makes
sense, as to collect all coins in this condition, players simply
had to follow the desire path. Since the desire path is meant
to be a natural route in the level from the start to the goal,
by following this path, players could collect all coins while
also progressing naturally toward the primary objective (i.e.
the treasure chest) of the levels. In other words, players may
have naturally collected more coins on their way to the goal,
or the coins along the desire path acted as a guide that play-
ers could follow to reach the goal. In the other conditions,
players had to go off the desire paths to collect the coins.
That is, DSGN and RAND required them to temporarily ig-
nore the primary objective of moving towards the chest, to
achieve the secondary objective of collecting all coins.

Additionally, players spent more time playing each level
in DSGN, than in NONE and PATH. This is likely because
DSGN required players to backtrack or take multiple paths
through a level to collect all coins, unlike PATH where the
coins were placed along the same desire path towards the
goal or NONE where there were no coins to collect. Simi-
larly, we did not find a difference in time spent playing each
level between DSGN and RAND, possibly because randomly

placed coins might also require players to backtrack.
Our findings in relation to the platformer game studied

by Andersen et al. (2011b) are particularly interesting. If we
consider DSGN and RAND to have off-path coins and look at
levels won and time played, we only found that PATH out-
performed RAND in terms of levels won. A possible expla-
nation for this may be that the coin placement in DSGN and
RAND was not far enough off-path to have as large an im-
pact on gameplay. Similar to Andersen et al. (2011b), we
did not find significant differences between no coins (NONE)
and on-path coins (PATH). However, while they saw a gen-
eral trend upward for time played with on-path coins, we
saw a trend downward for time played and levels won. It is
possible that our game was too short, or the levels in our
game were simply not challenging enough for the players to
benefit from having a path of coins as a guide. This is partly
supported by the survival plot in Figure 5. Though for the
first 12 levels, more players keep playing in NONE than in
PATH, for the last 2 levels, PATH’s survival rate catches up
with that of NONE. It is possible that if there were harder lev-
els beyond level 14, PATH would further overtake NONE in
terms of survival rate. If true, this implies that a path of coins
helps the player only if the levels are sufficiently hard. Ex-
ploring this is fertile ground for future work.

Based on our overall statistical results of player behavior,
the coin placement strategies appear to fall into two group-
ings, for which we did not find any significant differences.
NONE and PATH did not show differences from each other,
and DSGN and RAND did not show differences from each
other. That is, discounting the fact that players could not col-
lect coins when there were none, players in PATH behaved
similarly to those in NONE, while players in DSGN behaved
similarly to those in RAND. We note, however, that signifi-
cance might have been found with a larger sample size.

Overall, our findings imply that each of NONE, PATH,
DSGN and RAND has its own benefits. Absent of other utili-
ties, secondary objectives like collectibles do not necessarily
incentivize players to complete more levels and thus, in such
cases, not having any collectibles in the level (i.e. NONE), if
possible given a game’s design constraints, is a reasonable
choice. However, if such items are desired, then placement
strategy depends on the designer’s goals. If the primary pur-
pose of collectibles is to help players in completing the lev-
els, then PATH is preferable whereas if the goal is to make
the player explore as much of the level as possible and spend
more time in each level, at the risk of completing fewer lev-
els, then DSGN or RAND are suitable alternatives.

Conclusion
In this paper, we introduced a desire path-inspired algorithm
that uses player trajectories to place coins in platformer lev-
els, and studied how different placement methods affected
player behavior. We consider many avenues for future work.

In this work, we only looked at one game and game genre.
Future work could study other games and genres, including
2D top-down or puzzle and 3D games. We also examined
a narrow design space: there were only 10 coins to place,
and only one type of coin, which had no impact on game-
play. Designers may want to place more coins, other types of

Figure 6: Example of a shortcut found by players used in
coin placement. Many players dropped in the gap between
the third and fourth platforms to bypass the designer’s in-
tended path through the level. Note that the two platforms
near the bottom move vertically and horizontally.

coins (such as “challenge” coins that are intentionally hard
to collect), or other collectibles that impact gameplay (such
as powerups or extra lives). We also only looked at player
behavior and not subjective experience.

The algorithm itself was guided by our own heuristics, but
other heuristics may do better, possibly improving the im-
pact of coin placement. Our algorithm requires some play-
ers to win the level (although used as few as 8), which may
be a problem for especially difficult games, though in such
cases, it could be possible to use trajectories of players who
make the most progress through the level in place of win-
ning trajectories. The algorithm does not incorporate losing
trajectories or direction of player movement between cells,
which may be useful (for example, to prevent a path from
being found between two neighboring cells that is actually
impossible to move between).

We noticed that in some cases our algorithm used ex-
treme “shortcuts” that players had discovered through the
level (e.g. the early drop in Figure 6). This is a natural re-
sult of using desire paths, but if the designer does not prefer
coins in such shortcuts, they could be moved afterwards, us-
ing the path placement as an initial suggestion of locations
for further manual refinement.

Finally, in this work we used player trajectories to gen-
erate a single path for coin placement. Future work can ex-
plore sampling multiple paths, based on player trajectories,
to generate many possible coin paths through a level.

Acknowledgements

The authors would like to thank Liam Fratturo for the de-
signer coin placement, and the MTurk workers for playing.

References
Andersen, E.; Liu, Y.-E.; Snider, R.; Szeto, R.; and Popović,
Z. 2011a. Placing a value on aesthetics in online casual
games. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, CHI ’11, 1275–1278.
New York, NY, USA: ACM.
Andersen, E.; Liu, Y.-E.; Snider, R.; Szeto, R.; Cooper, S.;
and Popović, Z. 2011b. On the harmfulness of secondary
game objectives. In Proceedings of the 6th International
Conference on the Foundations of Digital Games.
Baldwin, A.; Dahlskog, S.; Font, J. M.; and Holmberg, J.
2017. Towards pattern-based mixed-initiative dungeon gen-
eration. In Proceedings of the 12th International Conference
on the Foundations of Digital Games.
Barros, G. A.; Liapis, A.; and Togelius, J. 2016. Murder
mystery generation from open data. In Proceedings of the
International Conference on Computational Creativity.
Bartle, R. 1996. Hearts, clubs, diamonds, spades: Players
who suit MUDs. The Journal of Virtual Environments 1(1).
Dormans, J. 2010. Adventures in level design: Generating
missions and spaces for action adventure games. In Pro-
ceedings of the 2010 Workshop on Procedural Content Gen-
eration in Games.
Hastings, E.; Guha, R.; and Stanley, K. 2009. Evolving con-
tent in the Galactic Arms Race video game. In 2009 IEEE
Symposium on Computational Intelligence and Games.
Jennings-Teats, M.; Smith, G.; and Wardrip-Fruin, N. 2010.
Polymorph: A model for dynamic level generation. In Pro-
ceedings of the 6th AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment.
Kohlstedt, K. 2016. Least resistance: How de-
sire paths can lead to better design. 99% Invisible.
https://99percentinvisible.org/article/least-resistance-desire-
paths-can-lead-better-design/.
Liapis, A.; Yannakakis, G.; and Togelius, J. 2013a. Gen-
erating map sketches for strategy games. Proceedings of
Applications of Evolutionary Computation 7835.
Liapis, A.; Yannakakis, G.; and Togelius, J. 2013b. Sentient
Sketchbook: Computer-aided game level authoring. In Pro-
ceedings of the 8th International Conference on the Founda-
tions of Digital Games.
Myhill, C. 2004. Commercial success by looking for desire
lines. In Masoodian, M.; Jones, S.; and Rogers, B., eds.,
Computer Human Interaction, 293–304. Berlin, Heidelberg:
Springer Berlin Heidelberg.
Nichols, L. 2014. Social desire paths: A new theoretical
concept to increase the usability of social science research
in society. Theory and Society 43(6):647–665.
Pedersen, C.; Togelius, J.; and Yannakakis, G. 2010. Mod-
eling player experience for content creation. IEEE Transac-
tions on Computational Intelligence and AI in Games 2(1).
Sarkar, A., and Cooper, S. 2018. Comparing paid and vol-
unteer recruitment in human computation games. In Pro-
ceedings of the 13th International Conference on the Foun-
dations of Digital Games.

Shaker, N.; Shaker, M.; and Togelius, J. 2013. Ropossum:
An authoring tool for designing, optimizing and solving Cut
the Rope levels. In Proceedings of the 9th AAAI Conference
on Artificial Intelligence and Interactive Digital Entertain-
ment.
Shaker, N.; Togelius, J.; and Nelson, M. 2016. Procedural
Content Generation in Games. Springer International Pub-
lishing.
Smith, A., and Mateas, M. 2011. Answer set programming
for procedural content generation: A design space approach.
IEEE Transactions on Computational Intelligence and AI in
Games 3(3):187–200.
Smith, G.; Whitehead, J.; Mateas, M.; Treanor, M.; March,
J.; and Cha, M. 2011. Launchpad: A rhythm-based level
generator for 2-D platformers. IEEE Transactions on Com-
putational Intelligence and AI in Games 3(1).
Smith, G.; Whitehead, J.; and Mateas, M. 2011. Tanagra:
Reactive planning and constraint solving for mixed-initiative
level design. IEEE Transactions on Computational Intelli-
gence and AI in Games 3(3):201–215.
Smith, G. 2014a. The future of procedural content gener-
ation in games. In Proceedings of the Experimental AI in
Games Workshop.
Smith, G. 2014b. Understanding procedural content genera-
tion: A design-centric analysis of the role of PCG in games.
In Proceedings of the 32nd annual ACM Conference on Hu-
man Factors in Computing Systems.
Snodgrass, S., and Ontañón, S. 2014. Experiments in map
generation using Markov chains. In Proceedings of the
9th International Conference on the Foundations of Digital
Games.
Summerville, A.; Snodgrass, S.; Guzdial, M.; Holmgård,
C.; Hoover, A.; Isaksen, A.; Nealen, A.; and Togelius, J.
2017. Procedural content generation via machine learning
(PCGML). In Proceedings of the 12th International Confer-
ence on the Foundations of Digital Games.
Togelius, J.; Yannakakis, G.; Stanley, K.; and Browne, C.
2011. Search-based procedural content generation: A tax-
onomy and survey. IEEE Transactions on Computational
Intelligence and AI in Games 3(3):172–186.
Yee, N. 2007. Motivations for play in online games. Cy-
berPsychology and Behavior 9(6):772–775.
Zhang, Y.; Padman, R.; and Levin, J. E. 2014. Paving
the COWpath: Data-driven design of pediatric order sets.
Journal of the American Medical Informatics Association
21(e2):e304–e311.
Zook, A., and Riedl, M. 2012. A temporal data-driven player
model for dynamic difficulty adjustment. In Proceedings of
the Eighth AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment.
Zook, A.; Lee-Urban, S.; Drinkwater, M.; and Riedl, M.
2012. Skill-based mission generation: A data-driven tem-
poral player modeling approach. In Proceedings of the
7th International Conference on the Foundations of Digital
Games.

