Controllable Level Blending between Games using Variational Autoencoders

Anurag Sarkar¹, Zhihan Yang² and Seth Cooper¹

¹Northeastern University
²Carleton College
(Towards) Controllable Level Blending between Games using Variational Autoencoders

Anurag Sarkar1, Zhihan Yang2 and Seth Cooper1

1Northeastern University
2Carleton College
(Towards) Controllable Level Blending between Games using Variational Autoencoders

Still no playability!

Promising results and future directions!
Motivation

- Past work on training models on existing levels to generate new levels
 - Sequence prediction using LSTMs
 - Conceptual blending using graphical models

Summerville and Mateas, 2016

Guzdial and Riedl, 2016
Motivation

• Past work on training models on existing levels to generate new levels
 • Sequence prediction using LSTMs
 • Conceptual blending using graphical models

• Gow and Corneli proposed generating new games by blending entire games

VGDL Frogger + VGDL Zelda = Frolda
Motivation

• Past work on training models on existing levels to generate new levels
 • Sequence prediction using LSTMs
 • Conceptual blending using graphical models
• Gow and Corneli proposed generating new games by blending entire games

IDEA: PCGML techniques + Game Blending
Blending Levels using LSTMs

- Trained LSTMs on levels of *Super Mario Bros.* and *Kid Icarus*

- Sampled from trained models to generate levels containing properties of both games

- Parametrized generator with weights to control approximate percentage of each game in blended level

(SMB=0.2, KI=0.8)

(SMB=0.8, KI=0.2)
Drawbacks

• Blended levels by taking turns between *Super Mario Bros.* and *Kid Icarus*

• Allowed control of proportion of each game in blended level but no control over more fine-grained tile-based properties
Solution: Variational Autoencoder (VAE)

• Enables more holistic blending of level properties by capturing latent space across both games

• Allows generation of segments satisfying specific properties

• More conducive to co-creative level design
Variational Autoencoder

- Autoencoders are neural nets that learn lower-dimensional data representations
 - Encoder \rightarrow input data to latent space
 - Decoder \rightarrow latent space to reconstructed data

Vanilla Autoencoder
Variational Autoencoder

- Autoencoders are neural nets that learn lower-dimensional data representations
 - Encoder \rightarrow input data to latent space
 - Decoder \rightarrow latent space to reconstructed data

- VAEs make latent space model a probability distribution (e.g. Gaussian)
 - Allows learning continuous latent spaces
 - Enables generative abilities similar to those of GANs
Motivation for VAE

• Past work in using autoencoders for Mario level generation
 • Autoencoders for Level Generation, Repair and Recognition, Jain et al. (2016)
 • Explainable PCGML via Design Patterns, Guzdial et al. (2018)

(a) Original (b) Unplayable (c) Repaired

Guzdial et al. (2016)

Guzdial et al. (2018)
Motivation for VAE

• Past work in using autoencoders for Mario level generation
 • Autoencoders for Level Generation, Repair and Recognition, Jain et al. (2016)
 • Explainable PCGML via Design Patterns, Guzdial et al. (2018)

• Evolving Mario Levels in the Latent Space of a DCGAN (i.e. MarioGAN), Volz et al. (2018)
Motivation for VAE

• Past work in using autoencoders for Mario level generation
 • Autoencoders for Level Generation, Repair and Recognition, Jain et al. (2016)
 • Explainable PCGML via Design Patterns, Guzdial et al. (2018)

• Evolving Mario Levels in the Latent Space of a DCGAN (i.e. MarioGAN), Volz et al. (2018)

• Use MarioGAN-based approach to capture latent space of 2 games instead of 1

Volz et al. (2018)
Why VAE over GAN?

- VAE architecture more conducive to co-creative level design
 - Designers don’t have to directly use latent space vectors
 - More explicit control in defining inputs to the system
 - More useful to blend/interpolate between known segments rather than latent vectors
VAE vs GAN vs VAE-GAN

- Trained a GAN and a VAE-GAN in addition to the VAE to compare generative capabilities in a level blending context.

- VAE-GAN is a hybrid generative model
 - Combines VAE and GAN by collapsing VAE decoder into a GAN generator.
Dataset and Training

- Trained on a level each from SMB (Level 1-1) and KI (Level 5) taken from the Video Game Level Corpus (VGLC)

- Each level is a 2D character array

- Each tile type was encoded using an integer and then with one-hot encoding for training
Dataset and Training

• To account for orientation, used 16x16 sliding window

• 187 segments of SMB + 191 segments of KL = 378 total segments

• Models learned to generate 16x16 blended level segments

• VAE, GAN and VAE-GAN all trained using same number of segments and with similar training conditions
Generation

• Trained models generate 16x16 segments in combined SMB-KI latent level design space

• Generation involves feeding a latent vector into the VAE’s decoder which outputs a one-hot encoded array which is converted to the 16x16 level segment

• Two generation methods
 • Like GANs, use random latent vectors or evolve optimal vectors using search
 • Unlike GANs, generate segments based on input segments
Evaluation

• Used four metrics for evaluation
 • Density
 • Difficulty
 • Non-Linearity
 • SMB Proportion
Evaluation

- Used four metrics for evaluation
 - Density
 - Difficulty
 - Non-Linearity
 - SMB Proportion

- Compared generative performance of VAE with that of GAN and VAE-GAN
 - How well models capture latent space spanning both games → computed above metrics for 10K random latent vectors
 - Accuracy of evolving desired segments using CMA-ES → evolved 100 segments with target values of 0%, 25%, 50%, 75%, 100% for each metric
• VAE does best at generating segments that are a mix of either game while GAN and VAE-GAN generate segments with mostly SMB or mostly KI elements
Results

• VAE does best at generating segments that are a mix of either game while GAN and VAE-GAN generate segment with mostly SMB or mostly KI elements

• VAE is better at capturing the latent space spanning both games as well as the space in between
 • 18% of VAE segments have elements of both games
 • 8% for GAN
 • 5% for VAE-GAN
Results

- GAN does better than VAE only for 100% Density and 75% and 100% Difficulty
Results

• GAN does better than VAE only for 100% Density and 75% and 100% Difficulty

• Ignore structures in training levels since actual segments would not be 100% solid nor have 16 enemies and hazards
Results

• No model does particularly well in blending desired SMB and KI proportions but VAE does well for the 50% case

• With similar training, VAE learns a latent space that is more representative while having more variation to enable better blending
Application in Co-Creative Design
Application in Co-Creative Design

- Interpolation between games
Application in Co-Creative Design

- Alternate connections between segments
Application in Co-Creative Design

- Generating segments satisfying specific properties

KI Hazards SMB ?-Marks SMB Enemies KI Doors KI Platforms
Application in Co-Creative Design

- Generating segments with desired proportions of different games
Future Work

• Playability
Future Work

• Playability

• Vector math in level design space
Future Work

- Playability
- Vector math in level design space
- Co-Creative Level Design Tool
Future Work

- Playability
- Vector math in level design space
- Co-Creative Level Design Tool
- Multiple Games and Genres
Future Work

• Playability

• Vector math in level design space

• Co-Creative Level Design Tool

• Multiple Games and Genres

Contact

Anurag Sarkar
Northeastern University
sarkar.an@husky.neu.edu